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Measurements whose sensitivity is limited by quantum noise 
can be improved by modifying the distribution of quan-
tum noise. For example, the shot noise limit of optical mea-

surements using coherent states of light can be improved by using 
squeezed states1–3. Squeezing methods employ light with uncertainty 
below shot noise in the signal quadrature at the expense of increased 
noise in orthogonal quadratures. As a result of this redistribution of 
uncertainty, squeezed states can enhance the precision of measure-
ments that are otherwise limited by quantum noise. The preeminent 
example is interferometric gravitational wave (GW) detectors, where 
squeezed state injection lowers the noise floor below shot noise1,2,4–6.

Squeezed states of light suitable for GW detectors have been suc-
cessfully generated using nonlinear optical materials5–9. Similarly, 
the optomechanical (OM) interaction is an effective nonlinearity10 
for the light field, which can squeeze its quantum fluctuations4,11–14. 
OM squeezing has some advantages over squeezed state generation 
using nonlinear optical media. It can be generated independently of 
the optical wavelength, with a tunable frequency dependence of the 
squeezing quadrature via the optical spring (ref. 14 and N. Aggarwal 
et al., in preparation), and in the long term, OM squeezers have 
great potential to be miniaturized.

Previously, OM squeezing has been observed15–20 in systems oper-
ated close to the mechanical resonance (within an octave). Although 
these experiments laid important foundations for OM squeezed 
light, some important challenges for practical OM squeezed 
light sources have remained. For GW detection, for example, the 
squeezed light source needs to be broadband over three decades 
in the audio-frequency band, compact and operate stably, 24/7, 
at room temperature. Here, we present a measurement of squeez-
ing produced by an OM system that is composed of a Fabry–Pérot 
interferometer with a microscale mirror as a mechanical oscillator 
at room temperature, where OM squeezing has been observed in a 
room-temperature system at frequencies as low as tens of kilohertz 
and extending more than a decade away from the mechanical reso-
nance. This observation of broadband OM squeezing at room tem-
perature presents a new avenue for building quantum OM resources 
at room temperature that are independent of laser wavelength.

Overcoming thermal noise21 has been a fundamental challenge 
in the observation of optomechanically generated squeezing beyond 
cryogenic temperatures. Reducing the quantum noise below shot 
noise in such a system is only possible if the motion of the oscil-
lator has a significant contribution from quantum radiation pres-
sure noise (QRPN) and is not overwhelmed by thermal fluctuations  
(N. Aggarwal et al., in preparation; S. Sharifi et al., in preparation). 
Our mechanical oscillators are designed to have extremely low broad-
band thermal noise (refs. 22–25 and S. Sharifi et al., in preparation) 
and have been used to observe QRPN26. The thermal noise of these 
oscillators is sufficiently low to not overwhelm the effect of QRPN. 
Even so, thermal noise does limit the amount of measurable squeez-
ing generated. In addition to the limitation set by thermal noise, our 
locking and detection scheme introduces losses that degrade some 
of the quantum correlations created by the OM coupling. Thermal 
noise, lossy detection and cavity-feedback noise together limit the 
amount of squeezing and the frequency band in which it is observed.

A precise calibration of shot noise has been the basis for all prior 
demonstrations of OM squeezing. We demonstrate a technique 
based on photocurrent correlations that obviates the need for such 
a calibration. This technique may be useful on its own for future 
studies of squeezing in general.

Our experimental set-up consists of two main subsystems—
the OM cavity and the detection system (Fig. 1). The OM system 
is a Fabry–Pérot cavity, housed in a vacuum chamber (~10−7 torr) 
and pumped with a 1,064-nm Nd:YAG non-planar ring oscillator 
(NPRO) laser. One of the two mirrors of this cavity is supported by 
a low-noise single-crystal microcantilever (similar to that employed 
in ref. 26), with a mass of 50 ng, a fundamental frequency of 876 Hz 
and a mechanical quality factor of 16,000. The other mirror is 
a 0.5-in-diameter mirror with a radius of curvature of 1 cm. The 
cavity is just under 1 cm long and has a finesse of ~11,500 and a 
half-width at half-maximum (HWHM) linewidth (γ) of 650 kHz.

We lock the cavity blue-detuned about 0.33γ away from reso-
nance, using the strong optical spring (145 kHz) created by the 
detuned operation14. This high optical rigidity, with a spring con-
stant of ~41 N m−1, can be put into perspective by converting it into 
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an effective Young’s modulus of a bar of the size of the optical beam27. 
For a cavity of length 1 cm and an optical beam size of 100 μm, the 
equivalent Young’s modulus is ~13 MPa. The high optical rigidity 
gives a flat spectrum below the OM resonant frequency, allowing 
for frequency-independent squeezing up to hundreds of kilohertz 
while keeping a low thermal noise. To compare, if we required the 
same level of thermal noise from a mechanical oscillator with a 
natural frequency of 145 kHz, the required mechanical quality fac-
tor would be 16,000 × (145,000/876)2 = 4.4 × 108. Our relatively low 
mechanical quality factor allows for the same performance because 
of the optical dilution of the mechanical dissipation28. The optical 
spring has a strong suppression due to its rigidity, but is unstable, so 
electronic feedback at frequencies near the optical spring is used to 
stabilize the system using the transmitted light for the error signal. 
We use radiation pressure as the actuator for locking, as detailed in 
ref. 29, with one difference: in this experiment, we use a phase modu-
lator (PM) as our actuator instead of an amplitude modulator. We 
can treat the instability of the optical spring in the same way, except 
for a slightly modified plant transfer function (N. Aggarwal and N. 
Mavalvala, in preparation). The open-loop gain of the cavity-locking 
loop is below one at all frequencies less than 140 kHz. Because we 
must obtain a signal to stabilize the optical spring while leaving the 
squeezed light available to be measured independently, we split the 
light exiting the cavity at a beamsplitter (BS1), using 15% of the total 
light to obtain the feedback error signal. This method introduces 
some common phase noise between the LO and the cavity field, 
which is included in our noise budget.

Traditionally, balanced homodyne detection is used to charac-
terize squeezing, because it cancels classical intensity noise of the 
LO and does not introduce loss. In our set-up, however, we use a 
different method to measure the squeezing. This is because the 
classical intensity noise is sufficiently small to not require can-
cellation, and the level of squeezing we expect is low, making it 
insensitive to a small loss. The beam transmitted from the cavity 
(signal) is combined with a LO beam on a 96.5–3.5% beamsplit-
ter (BS2), as shown in Fig. 1. We then measure the port that has 
96.5% signal and 3.5% LO on a photodetector (PDsqz). The out-
put of PDsqz is low-pass-filtered, amplified and then fed back to a 

piezoelectric crystal driving the length of the LO path. This loop 
suppresses relative path length fluctuations between the signal 
and the LO, but only at frequencies well below the measurement  
band. The loop has a unity gain frequency of less than 1 kHz and  
has an open-loop gain of less than −40 dB at the measurement  
frequencies, as shown in Extended Data Fig. 6. This eliminates  
the need to correct the squeezing spectrum for the response of 
the feedback loop. Additionally, there is no crossover between  
the homodyne loop and the cavity loop because their frequency 
regions of actuation are disjoint. Note that, because PDsqz is an 
out-of-loop detector for both the cavity-locking as well as the 
homodyne-locking loop, a sub-shot-noise measurement on it is an 
indication of squeezing30. The lock maintains PDsqz at a constant 
d.c. voltage level, which we use to calibrate the shot-noise level. The 
measurement quadrature is determined by the relative path length 
between the signal and LO. In the laboratory, the measurement 
quadrature can be tuned by changing either the lockpoint level, 
the LO power or both (see equations (11–14) in the Methods and 
Extended Data Fig. 5).

To compare the measured noise to shot noise, we measure the 
shot-noise level by turning off the homodyne lock, blocking the sig-
nal port and tuning the LO power to get the same voltage on PDsqz 
as our lockpoint. This allows us to measure a spectrum of PDsqz that 
contains the shot noise of the light, classical intensity noise and the 
dark noise of PDsqz. We then average this spectrum over our mea-
surement band to obtain the reference level (0 dB). Classical rela-
tive intensity noise (RIN) is suppressed by an intensity stabilization 
servo (ISS) to ~8 × 10−9 Hz−1/2 and contributes less than −20 dB of 
the noise on PDsqz (Extended Data Fig. 4). The RIN level is indepen-
dently measured by performing a correlation measurement between 
PDsqz and another pick-off between the ISS and the PM. Dark noise 
accounts for ~−12 dB of the shot-noise level (Extended Data Fig. 4) 
and is not subtracted.

The result of the homodyne measurement of the signal is shown 
in Fig. 231. For a quadrature angle of 12 ± 2° from the amplitude 
quadrature, we observe up to 0.7 ± 0.1 dB of squeezing (equivalent 
to a 15 ± 2% reduction in the power spectral density (PSD)), from 
30 kHz to 60 kHz.
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Fig. 1 | An overview of the main subsystems in the experiment. The 
classical intensity noise of a 1,064-nm Nd:YAG laser is suppressed by an 
intensity stabilization servo using an amplitude modulator (AM) as the 
actuator. The light is then sent to an OM cavity, where the input mirror 
is a mechanically rigid macromirror and the output mirror is a low-noise 
microscale mirror supported by a single-crystal microcantilever. The light 
inside this cavity is squeezed due to the radiation pressure interaction 
between the circulating light and the movable micromirror. The cavity is 
locked by picking off 15% of the transmitted power through beamsplitter 
BS1 on photodetector PDlock, and feeding back that signal to a phase 
modulator (PM). The remaining 85% of the light is interfered with a local 
oscillator (LO) on BS2, which reflects 96.5% of the light and transmits 3.5%. 
The phase between the LO and the signal is locked by feeding back the d.c. 
part of the fringe detected on PDsqz to a piezo mirror in the LO path. The 
signal from PDsqz is also sent into the spectrum analyser for measurement.
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Fig. 2 | Measured spectrum and modelled noise budget at 12° quadrature. 
All quadrature angles are referenced so that 0° corresponds to the 
amplitude quadrature of the cavity transmission. This figure shows the 
measured spectrum relative to shot noise. We show the shot-noise 
measurement in blue, which is used to obtain an average shot-noise level. 
All data in this paper are scaled to this average shot-noise level. The 
spectrum for total measured noise at 12° is shown in orange, showing 
squeezing from 30 kHz to 60 kHz, with maximum squeezing of 0.7 ± 0.1 dB 
(corresponding to a 15 ± 2% reduction in PSD) near 45 kHz. We also show 
the total budgeted noise as a dashed green line; this is a quadrature sum of 
quantum noise, thermal noise, classical laser noise, cavity-feedback noise 
and differential phase noise.
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The distribution of squeezing is studied in detail by measure-
ments of other quadratures of the homodyne signal. To do this with-
out changing the locking loop or shot noise, we keep the homodyne 
locking offset the same, and vary the LO power. This allows us to 
change the measurement quadrature in a shot-noise-invariant way. 
In Fig. 3a, we show this measurement as a function of sideband fre-
quency and quadrature.

To understand the observed squeezing, a detailed noise budget 
of the system is developed. The total budgeted noise in the squeez-
ing quadrature is shown in Fig. 2, and in a quadrature-dependent 
way in Fig. 3b. This noise budget includes a model32 that predicts 
the contribution of quantum noise and previously measured ther-
mal noise33 for the measured cavity and homodyne parameters as 
well as measured cavity-feedback injected noise and differential 
phase noise between the LO and the cavity. Finally, the extra loss in 
the detection path is obtained by comparing the measurement and 
noise budget at all frequencies and quadratures. Further details on 
the noise budget are provided in the Methods and Extended Data 
Figs. 2 and 3. As we see, the overall behaviour of the system is simi-
lar in the measurement as well as noise budget, most importantly 
the squeezing quadrature. The detailed noise budget can be used 
to infer the squeezing performance achievable by this particular 

device in the absence of technical noise and excess loss, as shown in 
Extended Data Fig. 1.

For additional evidence of squeezing, we also performed a 
correlation measurement on the squeezed light. Extending the 
approaches in refs. 34–38, we demonstrate that these correlations are 
a way to characterize a squeezed light source without measuring 
shot noise. The light exiting the cavity, after combination with the 
LO, is split equally between two photodetectors, as shown in Fig. 4a.  
As described in the Methods, if the light is limited by classical 
noise, positive correlations should be observed in the two photo-
currents. Shot-noise-limited light should produce zero correlations, 
and intensity-squeezed light should produce negative correlations. 
We measured the cross-power spectrum between the two photo-
detectors and confirmed that negative correlations are observed, 
as shown in Fig. 4b. The cross-spectrum is negative from 33 kHz 
to 62 kHz and positive elsewhere, which agrees with the measured 
spectrum in Fig. 2. For explicit comparison, we converted this cor-
relation to the squeezing factor (using equation (7) in the Methods). 
This squeezing factor is shown in Fig. 4c as a dashed purple line. 
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Fig. 3 | Measured and budgeted noises on PDsqz at 14 different 
quadratures, distributed more densely near the squeezing quadrature  
and sparsely elsewhere. a, Measured noise relative to shot noise.  
b, Budgeted noise relative to shot noise. In both panels, black contour lines 
correspond to shot noise; the regions inside them are squeezed (shown by 
yellow-orange shades) and the regions outside are antisqueezed (shown 
by the upper pink shades). Squeezing is observed from 10° to 17° and from 
30 kHz to 70 kHz. One of the mechanical modes of the cantilever can be 
seen at 27 kHz. As is characteristic of OM squeezing below the optical 
spring frequency (N. Aggarwal et al., in preparation), the higher quadrature 
shot-noise crossing for all frequencies occurs at the same quadrature. The 
upper part of the shot-noise contour is nearly perfectly horizontal.
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Fig. 4 | Calibration of squeezing by using correlations instead of 
measuring shot noise. a, Set-up for correlation measurement. We set 
the LO such that the field after BS2 is amplitude-squeezed and pass it 
through a 50–50 beamsplitter (BS3). We then perform a cross-spectrum 
measurement of the two outputs and normalize it to the individual spectra. 
This quantity can only be negative if the input beam is squeezed in the  
amplitude quadrature (see equation (3) in the Methods). b, Measurement  
of negative correlations. The existence of these negative correlations 
provides a verification of squeezing and allows for a shot-noise- 
independent way of verifying the existence of amplitude squeezing. c, The 
purple dashed curve shows the squeezing spectrum calibrated by using 
the negative correlations, without measuring shot noise (see equation (7) 
in the Methods). The orange solid line shows the spectrum calibrated by 
separately measuring the shot noise.
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This provides unconditional evidence that the light is squeezed at 
these frequencies and at this quadrature. In the same plot, we also 
show the squeezing spectrum obtained using the traditional way 
of measuring shot noise separately (solid orange line). This orange 
curve corresponds to a shot-noise-calibrated measurement at 13.6°. 
This spectrum is obtained by interpolating the shot-noise-calibrated 
measurements over various quadratures and using the interpolated 
dataset to minimize the residual between the correlation-calibrated 
measurement and the shot-noise-calibrated measurement. The 
quadrature that minimizes this residual is ϕ = 13.6°. This would 
be possible if the correlation measurement were made at a slightly 
different quadrature as compared to the shot-noise-calibrated mea-
surement. The difference between the quadratures can be attrib-
uted to the error in inference of quadrature due to uncertainty in 
the measurement of optical power. Once this error in measurement 
quadrature between the two methods is accounted for, the two 
methods are in excellent agreement with each other.

This system, as a squeezed-light source for GW measurements 
or as a source of other quantum states like entangled states, makes 
a wavelength-agnostic, miniature, robust quantum resource at 
room temperature. In addition to OM squeezing and exploring 
broadband quantum correlations at room temperature, this system 
also opens up a broad range of possibilities for quantum measure-
ments on multimode OM systems that exhibit quantum-mechanical 
behaviour in a thermal bath39–42, as well as quantum-mechanically 
calibrated temperature43,44 measurements. More generally, it brings 
us one step closer to experimentally investigating the interplay of 
quantum systems with classical decoherence mechanisms like ther-
mal fluctuations and gravitational forces45–52.
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Methods
Application to precision measurements. In addition to being wavelength-agnostic 
and compact, an OM squeezer innately generates a bright squeezed field. This 
means an OM squeezed field comes with its own internal phase reference, hence 
eliminating the need for an extra coherent phase-locking field5,53. For example, 
if the state after BS2 in Fig. 1 were sent to a precision measurement set-up, it 
would include the carrier field, which provides a self-referenced signal to allow 
locking to the correct squeezing quadrature. In contrast, vacuum squeezed states 
generated by a nonlinear crystal have to be accompanied by an extra and usually 
frequency-shifted optical beam that keeps track of the squeezing quadrature5,53.

Although the current level of squeezing in our set-up is limited by extraneous 
technical noises, in the absence of those noises, the squeezing would be limited 
by intracavity losses. This expected squeezing in the absence of extraneous noise 
is shown in Extended Data Fig. 1. After elimination of differential phase noise 
between the LO and cavity, the squeezing would extend to much lower frequencies. 
The differential phase noise injected into the system can be reduced by picking 
off and recombining the LO inside the vacuum where the OM cavity is situated. 
The feedback noise can be subtracted by monitoring the actuator signal. A more 
optimized feedback scheme could also be implemented that injects lower noise, 
for example, a feedback tuned for the measured quadrature’s transfer function with 
respect to an appropriate input quadrature that would couple minimum noise to 
the squeezing signal (N. Aggarwal and N. Mavalvala, in preparation).

Noise budget. The measurement is also compared to a noise budget, as shown 
in Fig. 3b. The total budgeted noise shown is the quadrature sum of individual 
contributions from the measured thermal noise, quantum noise, classical laser 
noises, cavity-feedback noise and differential phase noise between the signal and 
LO. It uses experimentally measured cavity parameters, thermal noise, BS1 and 
BS2 reflectivities and homodyne visibility, as listed in Table 1. The quadratures for 
which squeezing is obtained depend on the various OM parameters of the cavity, 
such as the detuning, circulating power, losses and thermal noise. We measure 
the cavity detuning, intracavity power and losses by measuring transfer functions 
from amplitude modulations on input to transmitted light (N. Aggarwal and N. 
Mavalvala, in preparation). The thermal noise is measured by a cross-spectrum 
measurement in the amplitude quadrature without the LO33. We have also 
separately calibrated all the beamsplitters, mirror reflectivities and homodyne 
visibility. These measured quantities are then used to predict the squeezing  
using a numerical model based on ref. 32. In this model, we also include the effect 
of the unbalanced homodyne with an imperfect visibility and common-mode  
laser noises.

We then characterize the impact of technical noises by measuring their 
contributions. First, we measure the contribution of noise injected by the 
cavity-locking system. The dominant source of this noise is shot noise at PDlock 
due to the 15% transmission of BS1. To measure this feedback noise, we measure 
the coherence between PDsqz and the amplifier output that is fed to the phase 
modulator at the input. This coherence, when multiplied with the spectrum of 
PDsqz, gives us the contribution of feedback noise. We do this at all measurement 
quadratures independently. We find that the impact of feedback noise is minimized 
at 17°, akin to other intracavity displacement noises like thermal noise.

In principle, this cavity-feedback noise could be subtracted from the final 
result, as it is a measured quantity, but we choose not to do so for the sake of 
simplicity. Instead, we choose to pick off the LO beam just after the cavity-feedback 
phase modulator, so that there is common-mode rejection of this locking loop 
phase noise at the homodyning stage at BS2. The common-mode rejection by the 
homodyne detection also allows us to cancel frequency noise originating from 
the NPRO laser, without requiring a frequency stabilization servo. Any scheme 
to measure squeezing not purely in the amplitude quadrature requires mixing 
the signal beam with an LO that is phase-coherent with it, and so one always has 
the ability to reject common-mode noise in this fashion. Also note that there is 
no risk of generating apparent squeezing after BS2 by deriving the LO from the 
cavity-locking field (for example, from feedback-squashing of the in-loop field), 
because the LO and signal fields are both out of loop30.

Additionally, displacement fluctuations that are relative between the LO and 
the signal path cause an effective phase noise in the measurement. We refer to this 
as the differential phase noise, and we measure it by analysing the measured noise 
at 17°. At this quadrature, all displacement noises including the feedback noise are 
cancelled, and the quantum noise contribution is at the shot-noise level. We thus 
attribute all noise above shot noise at 17° to this relative phase noise. It may also 
be worth noting that the large peak in the differential phase noise near ~40 kHz is 
due in part to electronics noise, but mostly to the resonance of the piezo used to 
control the LO phase. This could be improved by re-engineering the piezo mount 
to have a higher resonance. We calculate the contribution of phase noise in all 
other quadratures by assuming that it is maximum at 90° quadrature and scaling it 
sinusoidally.

Finally, we are left with excess loss in the detection path. We fit this loss by 
adding a frequency- and quadrature-independent loss to the noise budget. We 
find an excess loss of 22 ± 1%, which agrees with the measured loss of 21 ± 8%. 
Note that optical loss is the only effect where a single scalar would be sufficient to 
explain the measurement over all quadratures and frequencies. All of the above 

contributions to the noise budget are shown in Extended Data Figs. 2 and 3 (as a 
function of measurement quadrature in Extended Data Fig. 2 and as a function of 
frequency in the squeezing quadrature in Extended Data Fig. 3).

Correlations. Consider splitting an intensity-squeezed beam onto two 
photodetectors. For convenience, let us split it as 50%. The amplitude quadrature of 
the two fields hitting the photodetectors may then be written as

a1 ¼
e�rx1 þ c� y1ffiffiffi

2
p ð1Þ

b1 ¼
e�rx1 þ cþ y1ffiffiffi

2
p ð2Þ

where x1 is the vacuum that has been squeezed by the factor e−r, c represents 
any classical noise that might be present and y1 is the vacuum that enters at the 
beamsplitter.

If we measure the the averaged cross-power spectrum of the resulting 
photocurrents, but do not take the absolute value, we find

hSabi ¼
1
2

e�2r þ Sc � 1
� �

αβ ð3Þ

where we have normalized shot noise to 1 and assumed detector ‘a’ has a relative 
gain of α and detector ‘b’ has a relative gain β, and Sc is the power spectrum of 
the classical noise scaled to shot noise. All the cross terms between x1, y1 and c 
will average to 0, as they are uncorrelated. If the original field is squeezed, then 
that requires e−2r + Sc < 1, which would then imply hSabi<0

I
. Note that if this is 

not satisfied, such that we have classical noise that destroys the squeezing, then 
e−2r + Sc > 1, which requires hSabi>0

I
. Therefore, by looking at the sign of the 

average cross-power spectrum, one can definitively prove whether squeezing is 
present or not.

To interpret this, when the beam is limited by classical noise, the power 
fluctuations hitting both PDs are identical and positively correlated. If the beam 
is exactly shot-noise-limited, the power fluctuations hitting the two PDs are 
uncorrelated. With a perfectly amplitude-squeezed beam, the power fluctuations 
are exactly anticorrelated.

We may write the individual power spectra as

Sa
α2

¼ Sb
β2

¼ e�2r þ Sc þ 1
2

ð4Þ

then define the normalized correlation as

C ¼ hSabiffiffiffiffiffiffiffiffiffi
SaSb

p ¼ e�2r þ Sc � 1
e�2r þ Sc þ 1

ð5Þ

This is convenient, because it supplies a unitless measure of the nature of the noise 
and is independent of the relative gain of the photodetectors. This C is similar to 
the square root of coherence, but retains phase information. In fact, the coherence 
may be written as CC*.

We can see that if the field is entirely classical so that Sc dominates, then 
C = +1. Similarly, if the beam is exactly shot-noise-limited without squeezing, then 
C = 0. Finally, for an infinitely squeezed field with no classical noise, C = −1.

To simplify, let us call the total noise PSD of the original beam relative to shot 
noise R = e−2r + Sc, in which case

Table 1 | Experimental parameters determined from 
measurements in the laboratory

BS1 reflectivity 85%
BS2 reflectivity 96.5%
Input coupler transmission 50 ppm
Cantilever mirror transmission 250 ppm
Cavity losses 250 ± 20 ppm
Cavity linewidth HWHM (γ) 650 kHz
Cavity detuning 0.33γ
Homodyne visibility 0.93
Intracavity power 260 ± 30 mW
Signal power tESj j2

� �

I

58 ± 4 μW
LO power rELOj j2

� �

I

0−30 ± 3 μW
Detected power Esqz

�� ��2
� �

I

49 ± 3 μW

Detection inefficiency and extra losses 21 ± 8%

See Methods for definitions.
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C ¼ hSabiffiffiffiffiffiffiffiffiffi
SaSb

p ¼ R� 1
Rþ 1

ð6Þ

This leads to

R ¼ 1þ C
1� C

ð7Þ

Thus, by measuring C, we have a method to measure the amount of noise relative to 
shot noise, independent of our ability to calibrate shot noise.

This treatment is simplified by not propagating the d.c. carriers of the fields. 
The final physical result becomes invariant of the beamsplitter convention if 
one keeps track of the d.c. carrier fields. The cross spectrum hSabi

I
 is negative for 

a squeezing beam x, irrespective of the beamsplitter convention, as long as the 
carrier of field y is smaller than the carrier of field x. This condition is trivially 
satisfied in our measurement, because y is coming from vacuum fluctuations, with 
a zero d.c. field.

To include the effects of uncorrelated electronics noise on the photodetectors, 
we may rewrite the power spectra for each detector as

Sa ¼ α2
Rþ 1
2

þ α2Sda ð8Þ

Sb ¼ β2
Rþ 1
2

þ β2Sdb ð9Þ

where Sda and Sdb are the PSDs of each detector from electronics noise. The 
resulting normalized correlation is

C ¼ hSabiffiffiffiffiffiffi
SaSb

p ¼ R�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ1þSdað Þ Rþ1þSdbð Þ

p

¼ R�1
Rþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Sda

1þR

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Sdb

1þR

qh i�1=2

¼ η R�1
Rþ1

ð10Þ

where η ≤ 1 is an effective efficiency of the measurement. In our experiment, 
because the dark noise is far below shot noise (Extended Data Fig. 4), the efficiency 
η is close to 1. If instead one had a lower efficiency, we can see from equation (10) 
that electronics noise will make observed correlations trend towards 0, and the 
inferred quantum noise level to shot noise.

Tunable homodyne detector. In our experiment, we opt to use single-photodiode 
homodyne detection. Instead of combining the signal beam with the LO on a 
50–50 beamsplitter, we combine it on a highly asymmetric beamsplitter. We 
measure on the output port, which transmits the larger signal fraction and reflects 
the smaller fraction of the LO. Although this scheme introduces some loss of 
signal, it works with just a single photodetector and eliminates the need for 
performing perfect subtraction that is needed in a balanced homodyne. Because 
the amount of squeezing expected in this experiment is relatively low, the reduction 
in squeezing due to this beamsplitter loss is small.

We show, in the following, that the signal quadrature in which the 
measurement is performed is given by the angle made by the resultant of vector 
addition of the carrier of signal and LO with respect to the signal, as displayed in 
Extended Data Fig. 5. Similarly, the LO quadrature measured is given by the angle 
this resultant makes with the LO:

Esqz ¼ tES þ rRðθÞ ELO ð11Þ

tan ϕS ¼
rELO sin θ

rELO cos θ þ tES
ð12Þ

tan ϕLO ¼ �tES sin θ
rELO þ tES cos θ

ð13Þ

Esqz ¼ jEsqzj UðϕSÞ ð14Þ

Here, E represents the strength of the carrier of signal S, LO and the resultant 
(sqz). Variable t is the amplitude transmitivity (

ffiffiffiffiffiffiffiffiffiffiffi
0:965

p
I

) and r is the amplitude 
reflectivity (

ffiffiffiffiffiffiffiffiffiffiffi
0:035

p
I

) of the beamsplitter. We define a unit vector UðϕSÞ
I

, which 
represents a vector in the direction of the resultant, and determines the measured 
quadrature. Using ref. 32, we can also calculate the loss effect of the beamsplitter. 
We define e as the fluctuations on the field, normalized such that the shot noise 

is jEj2
I

 (N. Aggarwal and N. Mavalvala, in preparation). We then propagate these 
fluctuations from the signal and the LO as they interfere on the beamsplitter:

esqz ¼ teS þ reiϕRðθÞ eLO ð15Þ

Esqz  esqz ¼ jEsqzj UðϕSÞ
y esqz ð16Þ

SsqzðϕSÞ ¼ UðϕSÞ
y esqz e

y
sqz UðϕSÞ ð17Þ

¼ UðϕSÞ
y t2eSe

y
S þ r2RðθÞ eLOeyLORðθÞ

y
� �

UðϕSÞ ð18Þ

¼ t2SSðϕSÞ þ r2 ð19Þ

where we have assumed that the LO is shot noise limited, and defined 
SSðϕSÞ ¼ UðϕSÞ

y eSe
y
S UðϕSÞ

I
 as the spectral density of the signal if measured 

perfectly with a balanced homodyne detector at the quadrature ϕS. The above 
equations show that the total spectral density measured, Ssqz(ϕS) is a combination of 
SS(ϕS) and 1, in the ratio of the beamsplitter’s reflectivity.
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Extended Data Fig. 1 | Expected squeezing with lower detection loss and in the absence of technical noises. The differential phase noise masks the 
squeezing at low frequencies, whereas the noise injected by the cavity feedback electronics degrades the high frequency side of the correlations. Once 
these technical noises have been suppressed, and the optical losses have been lowered, we would expect to see about 1.5 dB of squeezing from this 
system. This limit comes from a combination of escape efficiency and thermal noise (N. Aggarwal et al., in preparation).
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Extended Data Fig. 2 | Noise budget: contributing noise sources compared to the measurement as a function of quadrature, averaged over a 1 kHz bin. 
Note that a 20 dB offset has been added to the differential phase noise in order to be visible on the same axis. Measured noise is shown in orange. Also 
shown are the contributions from quantum noise (with excess loss) in purple, thermal noise in red, differential phase noise in brown, and cavity-feedback 
noise in pink. The quadrature sum of all these contributions is shown in dashed green. All noises are relative to shot noise and are shown in dBs.
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Extended Data Fig. 3 | Noise budget: contributing noise sources compared to the measurement as a function of frequency at the squeezing quadrature, 
12∘. Measured noise is shown in orange. Also shown are the contributions from quantum noise (with excess loss) in purple, thermal noise in red, 
differential phase noise in brown, and cavity-feedback noise in pink. The quadrature sum of all these contributions is shown in dashed green. All noises are 
relative to shot noise and are shown in dBs.
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Extended Data Fig. 4 | Classical laser intensity noise and dark noise, shown relative to shot noise. Since we always keep the total detected power 
on PDsqz constant (and just change the local oscillator (LO) power to change the measurement quadrature), the relative dark noise and classical laser 
intensity noise can just be scaled to that power.
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Extended Data Fig. 5 | A phasor diagram showing how the tunable homodyne detector selects the measurement quadrature. The sum of the local 
oscillator (LO) field (blue) and the signal field (red) selects the quadrature that is being measured (green). In the entire manuscript, we report this angle 
θs as the measurement quadrature. We determine the quadrature by knowing the power in all the three fields, and the visibility. The dashed green circle 
represents a contour of constant detection power. In order to keep the shot noise reference unchanged, we choose to always lock PDsqz with a constant 
total detected power, and vary the LO power to change the measurement quadrature. This has the effect of changing the angle θ of the LO.
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Extended Data Fig. 6 | Measurement of the open loop transfer function of the homodyne locking loop around the squeezing frequency band. Since this 
loop is designed only to suppress large path length fluctuations between the local oscillator and the signal at low frequencies (< 1 kHz), this loop has close 
to zero gain at our measurement frequencies.

Nature Physics | www.nature.com/naturephysics

http://www.nature.com/naturephysics

	Room-temperature optomechanical squeezing

	Online content

	Fig. 1 An overview of the main subsystems in the experiment.
	Fig. 2 Measured spectrum and modelled noise budget at 12° quadrature.
	Fig. 3 Measured and budgeted noises on PDsqz at 14 different quadratures, distributed more densely near the squeezing quadrature and sparsely elsewhere.
	Fig. 4 Calibration of squeezing by using correlations instead of measuring shot noise.
	Extended Data Fig. 1 Expected squeezing with lower detection loss and in the absence of technical noises.
	Extended Data Fig. 2 Noise budget: contributing noise sources compared to the measurement as a function of quadrature, averaged over a 1 kHz bin.
	Extended Data Fig. 3 Noise budget: contributing noise sources compared to the measurement as a function of frequency at the squeezing quadrature, 12∘.
	Extended Data Fig. 4 Classical laser intensity noise and dark noise, shown relative to shot noise.
	Extended Data Fig. 5 A phasor diagram showing how the tunable homodyne detector selects the measurement quadrature.
	Extended Data Fig. 6 Measurement of the open loop transfer function of the homodyne locking loop around the squeezing frequency band.
	Table 1 Experimental parameters determined from measurements in the laboratory.




