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Quantum mechanics places a fundamental limit on the precision of 
continuous measurements. The Heisenberg uncertainty principle 
dictates that as the precision of a measurement of an observable 
(for example, position) increases, back action creates increased 
uncertainty in the conjugate variable (for example, momentum). 
In interferometric gravitational-wave detectors, higher laser 
powers reduce the position uncertainty created by shot noise (the 
photon-counting error caused by the quantum nature of the laser) 
but necessarily do so at the expense of back action in the form 
of quantum radiation pressure noise (QRPN)1. Once at design 
sensitivity, the gravitational-wave detectors Advanced LIGO2, 
VIRGO3 and KAGRA4 will be limited by QRPN at frequencies 
between 10 hertz and 100 hertz. There exist several proposals to 
improve the sensitivity of gravitational-wave detectors by mitigating 
QRPN5–10, but until now no platform has allowed for experimental 
tests of these ideas. Here we present a broadband measurement of 
QRPN at room temperature at frequencies relevant to gravitational-
wave detectors. The noise spectrum obtained shows effects due 
to QRPN between about 2 kilohertz and 100 kilohertz, and the 
measured magnitude of QRPN agrees with our model. We now 
have a testbed for studying techniques with which to mitigate 
quantum back action, such as variational readout and squeezed 
light injection7, with the aim of improving the sensitivity of future 
gravitational-wave detectors.

Gravitational-wave (GW) detectors such as Advanced LIGO con-
tinuously monitor the position of test masses using electromagnetic 
radiation. The Heisenberg uncertainty principle limits the precision 
of such a continuous measurement owing to the quantization of light. 
Uncertainty in the number of photons reflecting from a mirror exerts 
a fluctuating force due to radiation pressure on the mirror, causing 
mechanical motion1,11,12. This force leads to a noise source for GW 
measurements, namely, QRPN. GW interferometers typically use as 
much laser power as possible in order to minimize the shot noise and 
maximize the signal-to-noise ratio for GWs. Advanced LIGO and other 
second and third generation interferometers will be limited by QRPN 
at low frequency when running at their full laser power.

Given the imperative for more-sensitive GW detectors, it is impor-
tant to study the effects of QRPN in a system similar to Advanced LIGO, 
which will be limited by QRPN across a wide range of frequencies far 
from the mechanical resonance frequency of the test mass suspension. 
Studying quantum mechanical motion is challenging, however, owing 
to the fact that classical noise sources such as environmental vibrations 
and thermally driven fluctuations13 usually dominate over quantum 
effects. Previous observations of QRPN have observed such subtle 
quantum effects, even at room temperature, but these experiments have 
thus far been limited to high frequencies (megahertz to gigahertz) and 
in a narrow band around a mechanical resonance14–17.

In this work, we present a broadband and off-resonance meas-
urement of QRPN in the audio frequency band. We have developed  
low-loss single-crystal microresonators with sufficiently minimized 

thermal noise that the quantum effects can be observed at room tem-
perature. The optomechanical system, shown in detail in Fig. 1, is a 
Fabry–Pérot cavity with a mechanical oscillator as one of the cavity 
mirrors. The optomechanical cavity is just under 1 cm long and consists 
of a high-reflectivity single-crystal microresonator that serves as the 
input coupler and a macroscopic mirror with a 1-cm radius of curva-
ture as the back reflector. The cavity is made slightly shorter than the 
1-cm radius of curvature of the large mirror in order to achieve a small 
spot size on the microresonator while maintaining stable cavity modes. 
The microresonator consists of a roughly 70-μm-diameter mirror pad 
suspended from a single-crystal GaAs cantilever with a thickness of 
220 nm, a width of 8 μm and a length of 55 μm. The mirror pad is made 
up of 23 pairs of quarter-wave optical thickness GaAs/Al0.92Ga0.08As 
layers for a transmission of 250 parts per million (p.p.m.) and exhibits 
both low optical losses and a high mechanical quality factor18–21. The 
microresonator has a mass of 50 ng, a natural mechanical frequency 
of 876 Hz and a measured mechanical quality factor of 16,000 at room 
temperature (295 K). The cavity has a finesse of 13,000 and half-width 
at half-maximum (HWHM) linewidth of 580 kHz.

A 1,064 nm Nd:YAG laser beam is used to both stabilize the  
optomechanical cavity and measure the mechanical motion of the 
microresonator. The cavity is detuned from resonance by 0.3 to 0.6 
linewidths, and locked using a feedback loop that utilizes the restoring 
force produced by a strong optical spring22, which shifts the mechan-
ical resonance of the microresonator up to 145 kHz at high power. 
We choose to detune the cavity primarily because it is nearly impossi-
ble to avoid a strong optical-spring effect owing to the weak restoring 
force provided by the cantilever supporting the microresonator. We 
would need to keep the cavity locked to resonance within 2 × 10−5 
linewidths, or about 10 Hz, to avoid having an optical spring as stiff 
as the cantilever, and any deviations around this point would produce 
strong variations in the optical-spring stiffness. Instead, by intention-
ally detuning the cavity by nearly 0.5 linewidths, we operate near the 
peak optical-spring stiffness, where the cavity is relatively insensitive to 
variations in detuning, as described in Methods. The error signal for the 
feedback loop is detected using photodetector PDL in transmission of 
the cavity and photodetector PDM in reflection. The error signal is fed 
back to an amplitude and phase modulator, as shown in Fig. 1.

The final measurement configuration uses only the reflected light 
because the transmitted light has relatively large shot noise due to the 
small transmission (50 p.p.m.) of the end mirror, which may pollute 
the measurement. Reflection locking with the phase modulator is less 
robust, and we are not able to acquire lock directly without first using 
the transmission locking and amplitude modulator. We measure the 
displacement noise spectrum by detecting the light that is reflected 
from the cavity. After the cavity is locked, the signal from PDM is sent 
to a spectrum analyser for analysis. We measure an uncalibrated noise 
spectrum by first measuring the amplitude spectral density of the out-
put from PDM. We calibrate the spectrum by dividing it by the transfer 
function from the laser-cavity piezo to PDM. This method treats the 
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optical spring as a feedback loop22, and by factoring out its effect, we 
restore the observed displacement spectrum to what it would be in the 
absence of the optical spring and our electronic feedback. The laser 
piezo has been calibrated in frequency, which allows the resulting signal 
to be calibrated to displacement by using the cavity length.

To understand the resulting measurement of the microresonator 
motion, we must carefully account for various noise sources. 
Specifically, we consider QRPN, thermal noise, shot noise, dark noise 
of the photodiode readout, and classical intensity and frequency fluc-
tuations of the laser. Thermal noise, governed by the fluctuation dissi-
pation theorem, sets a limit on the precision of force and displacement 
measurements23, and is also one of the main limitations in this exper-
iment. We rely on direct measurements of thermal noise to quantify its 
effects. To measure thermal noise, we operate the cavity with about 
10 mW of circulating power, a level at which the QRPN is small com-
pared to the Brownian motion of the microresonator. One challenge in 
accurately accounting for the thermal noise is that as the circulating 
power in the cavity is increased, the beam position on the microreso-
nator shifts slightly, and the coupling of the pitch and yaw modes of the 
microresonator changes. To account for this, we measure the thermal 
noise at different alignments with 10 mW of circulating power to match 
the desired alignment at higher power, and ultimately use these 

measurements to constrain a model. The measured thermal data are 
used at most frequencies, except those near the pitch, yaw and side-to-
side resonances, as described in Methods. The observed thermal noise 
agrees with a structural damping model13,24 from 200 Hz to 30 kHz. 
Modelled thermal noise (�xth) is used near the resonances because it is 
difficult to reproduce the exact alignment at low and high powers. 
Structural damping models contain a frequency-independent loss 
angle, and for a harmonic oscillator have a displacement amplitude 
spectral density of
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where kB is the Boltzmann constant, T is temperature, m is mass,  
Q is the quality factor, ω = 2πf, where f is the measurement frequency, 
and ωm is the angular frequency of the mechanical mode13. Above 
30 kHz, we observe thermal noise that deviates from the structural 
damping model, which appears to be consistent with thermoelastic 
damping of the drumhead mode of the microresonator. In the noise 
budget, we use the measured thermal noise at these frequencies. The 
resulting thermal noise, which is used in our noise budget, is shown 
in Fig. 2.

Quantum noise is the other dominant noise source in the exper-
iment, and we use an input–output model for comparison to our 
measurements. The model calculates quantum noise using a set of 
equations that relate the output fields to the input fields25,26. The model 
requires knowledge of the optical losses, detuning and the power cir-
culating in the cavity, in addition to the microresonator’s mechanical 
susceptibility. The cavity losses, detuning and circulating power are 
constrained by measurements of the optical spring. The parameters 
for the microresonator are constrained by the thermal noise measure-
ment. The details of these measurements are presented in Methods, 
along with analysis of the effects of uncertainty in these parameters. 
The model then predicts the level of QRPN, as shown in Fig. 2 for 
220 mW of circulating power. To further verify the model of QRPN, 
we also measure the response of our system to intensity fluctuations 
of the input laser beam, multiply that measurement with the level of 
shot noise for the input power, and calibrate the resulting projected 
noise level. This results in an independent measurement for the level 
of QRPN that agrees with the modelled result. The details of the meas-
urement are presented in  Methods.

In order to observe quantum back action, we measure the cavity 
displacement noise at five cavity circulating powers of 10 mW, 73 mW, 
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Fig. 1 | Experimental set-up. Laser light passes through an amplitude 
modulator (AM), phase modulator (PM) and a second AM before entering 
the cavity, which sits on a suspended platform inside a vacuum chamber 
(shown in grey). The optomechanical cavity consists of a microresonator 
(shown in the inset) and a macroscopic mirror mounted on a piezoelectric 
transducer (PZT). An intensity stabilization servo (ISS) is used to 
minimize classical intensity fluctuations and stabilize the laser power to 
shot noise. The transmission (reflection) is detected by photodetector 
PDL (PDM) and passed through a servo amplifier (SA) before being sent to 
the AM (PM) for feedback. The cavity is initially locked using PDL, but is 
switched to using PDM for the final measurement.
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Fig. 2 | Measured and budgeted noise. Contributions of various noise 
sources to the displacement of the microresonator, shown as amplitude 
spectral densities, are shown for the case with 220 mW circulating 

power. The resonances at 3.7 kHz, 15 kHz and 28 kHz are higher-order 
mechanical modes of the microresonator. Each of these noise sources (see 
key) is discussed in detail in Methods and in Extended Data Fig. 1.
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110 mW, 150 mW and 220 mW. For each power level, the input power is 
multiplied by the same factor. Owing to the shifting alignment resulting 
from static radiation pressure, the optical losses in the cavity change as 
a function of power. This effect is quantified through measurements 
of the optical spring. The detuning varies from about 0.6 to 0.35 line-
widths when going from low to high power, but this only affects the 
level of QRPN by ±4%, as explained in Methods. The measured noise at 
220 mW, shown as the orange curve in Fig. 2, shows that the measured 
noise agrees with the sum of all known noise sources. Below 10 kHz, 
thermal noise is the biggest contributor to the displacement noise, but 
the effect of QRPN is still visible in the displacement noise measure-
ment down to 2 kHz, where it accounts for about 20% of the measured 
displacement noise. The measured classical radiation pressure noise 
from classical intensity fluctuations of the laser and laser frequency 
noise27 are below the other noise sources across the measurement band, 
as shown in Extended Data Fig. 1.

To demonstrate that the observed QRPN scales with the expected 
square root of power1, we compare the noise at each power level.  
The data are shown in Fig. 3, where the displacement noise spectrum 
has been integrated over a 1 kHz band between 21 kHz and 22 kHz. 
The observed data are consistent with the predicted scaling, and  
the QRPN is the largest noise source for circulating powers above 
150 mW. For the measurement at 220 mW shown in Fig. 3, QRPN 
represents 48% of the total noise, while the thermal noise accounts 
for 27%, with the remaining 25% composed of the sum of the sub-
dominant noise sources. We sum in quadrature the contribution of 
each of the noise sources to compute the total expected noise. We find 
that our five displacement noise measurements, shown as orange stars 
in Fig. 3, agree with the total expected noise (black curve) with the 
statistical measurement error taken into account. The measurement 
error is calculated by repeating the measurement multiple times and 
is dominated by the fluctuations in the transfer function measurement 
that is used to calibrate the spectrum. The dashed black curve shown 
in Fig. 3 is the predicted displacement noise without a contribution 
from QRPN. The measurements of the displacement noise rule out 
the model without QRPN.

In addition to showing that the noise scales correctly with optical 
power, a variety of other tests were performed to further verify that 
that we are observing QRPN. First, we put constraints on shot noise, 
dark noise, and classical laser intensity and frequency noise, as seen in 

Extended Data Fig. 1. Second, we fit the noise we attribute to QRPN 
to a power law in frequency, and require the resulting fit to match the 
measured data to within 10% in the 1–100 kHz frequency range. The 
resulting frequency scaling ( f−1.95 ± 0.2) matches the expected frequency 
dependence ( f−2), and excludes the frequency dependence of thermal 
noise ( f−5/2). Third, we also rule out that this could be an effect of 
excess bulk heating of the microresonator by verifying that the thermal 
noise at low frequencies remains the same within ±2% measurement 
uncertainties (see Methods). Using the optical-spring measurement to 
constrain the cavity losses also allows us to rule out absorption pho-
tothermal effects28 because any excess damping would be observed 
in mechanical response measurements. Finally, we perform a trans-
fer function measurement by amplitude modulating the input light 
and measuring the response at PDM. By comparing to a similar trans-
fer function while the cavity is far from resonance, we show that the  
cavity coherently amplifies the amplitude modulations, indicating the 
presence of an optomechanical parametric process. Additionally, we 
can project the expected level of QRPN by multiplying this transfer 
function with the magnitude of the vacuum fluctuations that enter the 
cavity, and dividing by our calibration transfer function. We find that 
this projection matches the QRPN model.

Since the first proposals of interferometric GW detectors, QRPN 
has been known to present a fundamental limit to the low-frequency 
sensitivity of GW detectors. For the past two decades, the measurement 
of QRPN at frequencies relevant for GW detectors has eluded increas-
ingly sensitive experiments. The presented ability to measure QRPN at 
frequencies in the GW band opens up the possibility of experimental 
tests of QRPN-reduction schemes5–10. This ability has already led to 
measurements of ponderomotive squeezing29, cancellation of QRPN30, 
and the suppression and amplification of QRPN with squeezed light31. 
From a fundamental standpoint, the measurement of QRPN amounts 
to observation of quantum vacuum fluctuations inducing motion of a 
macroscopic object.

Online content
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Methods
Noise budget. In addition to the QRPN and thermal noise shown in Fig. 2, sub-
dominant noise sources contribute to the measured displacement noise spectrum. 
A full noise budget for the 220 mW measurement is shown in Extended Data Fig. 1. 
The largest of the subdominant noise sources is the combination of shot noise and 
dark noise that is present on PDM. Extended Data Fig. 1 includes a measurement 
of the combined shot noise and dark noise. Factoring out the effect of the opti-
cal spring using the calibration discussed in the main text causes the white shot 
noise to have the frequency dependence shown in Extended Data Fig. 1. Classical 
laser intensity noise and laser frequency noise lie below the other noise sources. 
Extended Data Fig. 1 includes our measurement of the classical laser intensity noise 
and laser frequency noise level for the Nd:YAG ring laser27.

With all of the noise sources accounted for, we find that QRPN is the dominant 
noise source over a wide range of frequencies with 220 mW of light circulating 
in the cavity, as seen in Fig. 2 and Extended Data Fig. 1. To quantify the effect of 
QRPN across our measurement band as a function of power, we provide a con-
tour plot showing the ratio of QRPN to the total measured displacement noise in 
Extended Data Fig. 5.
Thermal noise. As described in the main text, thermal noise sets a limit on the pre-
cision of mechanical experiments and can overwhelm attempts to measure quan-
tum effects if it is too large. As one of the principal noise sources in this experiment, 
we must measure the thermal noise across our measurement band and account for 
it in our noise budget analysis. One difficulty in accounting for the thermal noise 
is that the cavity alignment shifts slightly as the circulating power is increased and 
the cantilever is deflected by radiation pressure. Even a small change in alignment 
can change the coupling of higher-order mechanical modes, specifically the yaw, 
pitch and side-to-side modes, as shown in Extended Data Fig. 2.

We model the thermal noise using a finite element model of the microresonator 
that is based on dimensions obtained from a micrograph of the resonator and is 
further constrained by measurements of the frequencies and quality factors of 
the fundamental mode and the next three higher-order modes. We include the 
material properties of the GaAs and AlGaAs (such as density, Young’s modulus, 
anisotropy, and so on) in the model. The total thermal noise spectrum is then 
calculated using equation (1) by summing the contribution of each mechanical 
mode in quadrature as13
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where ωi, Qi and mi are the resonance frequency, quality factor and mass of each 
mode. We infer the modal mass for each mode by using the thermal noise meas-
urement presented below, and are able to reproduce the inferred modal masses by 
changing the beam position in the finite element model.

The thermal noise curve shown in Fig. 2 in the main text is a combination of a 
measurement at frequencies away from the higher-order mechanical modes and 
a model at frequencies around the yaw, pitch and side-to-side modes. The mod-
elled thermal noise is used around the mechanical modes because the thermal 
noise must be measured at a low circulating power of 10 mW, and it is difficult 
to reproduce precisely the same alignment at different power levels. The modal 
mass of the higher-order modes is set in the model by comparing the magnitude 
and width of the higher-order mode resonance peaks in the displacement noise 
measurement shown in orange in Fig. 2 with those in the model, at frequencies 
dominated by thermal noise.

In order to demonstrate that the slight changes in alignment resulting from high 
circulating power do not introduce excess thermal or technical noise that could 
mask the effect of QRPN, we measure the displacement noise at 10 mW circulat-
ing power with the microresonator position shifted to be as close as possible to 
the alignment with 220 mW of circulating power, as determined by the observed 
peak height and width of the pitch and yaw modes. By comparing the results of 
that measurement with thermal noise measurements in the nominal alignment at 
lower power, shown in Extended Data Fig. 3, we confirm that the thermal noise at 
frequencies away from the resonances is consistent with the model for structural 
damping ( f−5/2) and does not change in a way that is consistent with the observed 
QRPN ( f−2). Producing a thermal noise level at 20 kHz that would be as large as 
QRPN would require thermal noise with a frequency dependence inconsistent with 
our observed data in Extended Data Fig. 3. Further, the degree of misalignment 
necessary would introduce cavity losses much greater than observed.
Calibration and uncertainties. In order to properly model the expected level 
of QRPN, we must know key properties of the mechanical and optical system, 
specifically the mass of the microresonator, the power circulating in the cavity, 
the total optical losses in the cavity, the length of the cavity and its detuning from 
resonance. In this section, we describe how these quantities are measured, and the 
effects of uncertainty in those measurements.

The mass of the microresonator is measured to within ±10% using the meas-
ured thermal noise spectrum shown in Extended Data Fig. 3 at frequencies near 
the fundamental resonance. The thermal noise, given in equation (1), depends on 
the temperature, mechanical resonance frequency, quality factor and mass. The 
temperature is well known, and there is insignificant heating of the cantilever with 
the small circulating power used in measuring the thermal noise. The mechani-
cal resonance frequency and quality factor are measured to good precision using 
ringdown measurements with an optical lever set-up. Therefore, we may use the 
thermal noise measurements to constrain the mass of the microresonator to 50 ng. 
The estimated ±10% uncertainty is associated with systematic uncertainties arising 
in calibrating the measured thermal noise. The measured mass is consistent with 
a finite element model of the microresonator based on measured dimensions of 
the microresonator that are determined from a micrograph.

The cavity length is constrained by measurements of the geometric size of the 
cavity mode. Given the known radius of curvature of the back reflector mirror 
(1 cm ± 100 μm), the stability of the cavity puts an upper limit on the cavity length. 
We further constrain the cavity length by measuring the size of the cavity mode, 
which is imaged with a camera, and conclude that the overall cavity length must 
be within 100 μm of the radius of curvature of the reflector. Using this method, we 
conclude our cavity length is within 200 μm of 1 cm.

To constrain the optical parameters, we have found using measurements of the 
optical spring to be the most accurate technique. To measure the optical spring, 
we measure the frequency-dependent optical response of the system amplitude 
modulating the light injected into the cavity using the second amplitude modu-
lator, as shown in Fig. 1. We measure a swept sine transfer function between the 
injected modulation and the modulation detected in transmission of the cavity at 
PDL before the feedback is switched to the phase modulator. This provides a clear 
measurement of the optical-spring frequency and damping22.

To obtain the other parameters, we first hold the power incident on the cavity 
constant, while varying the cavity length by tuning the cavity piezo. By performing 
an optical-spring measurement at each setting, we may find the cavity length and 
transmitted power level (as measured by PDL) that has the highest-frequency optical 
spring. This allows us to set the detuning to a known value of 0.6 with an accuracy of 
±7% for these settings, corresponding to a maximum in the optical-spring constant32
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where Pcirc is the circulating power in the cavity, c is the speed of light in vacuum, 
Ttotal is the fraction of light leaving the cavity in one round trip (including loss and 
mirror transmission), λ0 is the laser wavelength, δγ is the detuning of the cavity 
in units of the HWHM linewidth γ, and ω is the measurement frequency. This 
method is independent of knowledge of the optical power level and cavity losses.

Once the detuning is determined by the above method, we then constrain the 
circulating power and cavity losses by matching the optical-spring frequency and 
quality factor using the measured transfer function of the optical response. This is 
possible because, while the real (K) and imaginary (ΓOS) parts of the optical-spring 
constant vary identically with circulating power, they do not scale identically with 
the cavity linewidth32 (and hence losses), as described by:

Γ ω
γ δ ω γ

=
/

+ − /γ

K m( ) 2
[1 ( ) ]

(4)OS 22

Using this method, we constrain the circulating power to be 73 mW with an accu-
racy of 10% and total cavity losses to 470 p.p.m. ± 10 p.p.m. The cavity losses are com-
posed of the transmission of the microresonator (Ti ≈ 250 p.p.m.) and the transmission 
of the end mirror (To ≈ 50 p.p.m.), with the remainder a combination of absorption, 
scattering and diffraction loss (L = 170 p.p.m.). The observed total loss corresponds 
to a cavity linewidth of 560 kHz ± 10 kHz and is consistent with an independent 
measurement of the cavity linewidth. The independent measurement was performed 
by measuring the transfer function of amplitude fluctuations to PDL at frequencies 
between 500 kHz and 10 MHz with the cavity operated at a high detuning.

For the measurements at high circulating power levels, we scaled both the input 
power and the transmitted power by identical factors. Nominally, one might expect 
this to keep the cavity detuning constant, but we found that the detuning varied by 
a small amount. This change in detuning is attributed to the changing alignment 
of the cavity beam on the microresonator as a result of the larger static radia-
tion pressure as the power is increased. The slight shift in beam position on the 
microresonator can lead to changes in the cavity losses, probably due to diffraction 
loss around the edge. This change in losses will in turn be accompanied by a change 
in detuning in order to maintain the ratio of circulating power to input power.  
To take this effect into account, we measure the optical-spring transfer function  
as described above. Since the input power and the transmitted power are now 
already determined (because they were scaled from the 73 mW circulating power 
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configuration), the optical detuning and optical losses are varied to match the 
observed optical-spring transfer function to the model. From this analysis, we 
determine the cavity detuning to be 0.45 linewidths, 0.43 linewidths and 0.35 
linewidths to within ±6%, and total losses (Ttotal = Ti + To + L) to be 490 p.p.m.,  
495 p.p.m. and 505 p.p.m. to within ±10 p.p.m., for circulating power levels of 
110 mW, 150 mW and 220 mW, respectively. The total losses correspond to cavity 
linewidths of 585 kHz ± 10 kHz, 590 kHz ± 10 kHz and 600 kHz ± 10 kHz for 
circulating power levels of 110 mW, 150 mW and 220 mW, respectively.

We further investigate the effect of uncertainty in the cavity detuning and cavity 
losses in our measurements and study its effect on the level of modelled QRPN. 
By holding the transmitted power and input power constant, the level of optical 
loss determines the required cavity detuning that will match the measurements. 
In Extended Data Fig. 4 we show the modelled level of QRPN as we vary the loss 
and detuning for the 220 mW case. With our estimated uncertainties in detuning, 
we may conclude that the resulting uncertainty in the modelled QRPN is ±4%, 
well within our measurement uncertainty.

Our calibration method of using the laser-cavity piezo to measure the response 
at PDM manifestly removes the effect of the optical spring and our electronic 
control loop. We calibrate by modulating the laser frequency and measuring its 
frequency dependent response at PDM. This measurement relies on a change in 
the laser frequency acting equivalently to a change in cavity length, scaled by the 
factor L/ω0. Thus, this transfer function directly allows us to measure the effect 
of a given amount of displacement on our measurement PD, irrespective of the 
control system. This is equivalent to any experiment that uses feedback control to 
keep a system near its operational point.
Comparison to standard cavity optomechanics. The device used in this experiment 
may not initially appear to be that useful for quantum cavity optomechanics because 
of its modest mechanical quality factor and low resonance frequency. In this section, 
we describe why standard metrics33 are not effective in our case. We summarize com-
mon parameters in Extended Data Table 1. Notably, our system does not satisfy the 
requirement14 for observing QRPN that (C/nth) × [1 + (2ωm/κ)2]−1 > 1, where C is the 
multiphoton cooperativity, nth is the thermal phonon occupation, ωm is the mechanical 
resonance frequency, and κ is the FWHM cavity decay rate. This result should not 
be surprising given that the system is in fact dominated by thermal noise at the bare 
mechanical resonance frequency, and that these parameters are intended to be relevant in 
a viscously damped system. It also would not be logical to use the optical-spring parame-
ters in place of the bare mechanical parameters because the region in which we measure 
is below the optical-spring resonance frequency. This requirement could be modified 
to account for the observed structural damping as C > nth × ωm/ω ×[1 + (2ωm/κ)2]−1,  
which is satisfied in our system for sufficiently large ω.

Here, we illustrate the key parameters of our system that make this measurement 
possible. The full calculation of quantum noise must include the effect of vacuum 
fluctuations that enter the system wherever there is a loss. We may simplify this 
calculation for illustrative purposes by assuming an ideal cavity for which the only 
loss is the transmission of the microresonator (that is, Ttotal = Ti). To calculate the 
same level of QRPN as in our real system, we assume the circulating power and 
cavity decay rate are the same in both cases. For the Pcirc = 220 mW circulating 
power level at a detuning of 0.35 linewidths, this is equivalent to Pin = 31 μW 
incident on the cavity, obtained from the relationship
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where Ti is the transmission of the microresonator. The amplitude spectral density 
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where ω0 is the laser frequency, and the first term is the power spectral density of 
power fluctuations for the incident light, and the second term accounts for the 
power amplification in the cavity. The power spectral density for the force on the 
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which agrees to within 10% of our full model. Although this calculation was  
performed without consideration of the optical spring, its effects are removed in 
our calibration as previously discussed, and it does not modify the ratio of quantum 
to thermal noise at frequencies below the optical-spring resonance.

In order to observe QRPN, we must make the thermal noise sufficiently small. 
For the structural damping model that we have found to be consistent with our 
observed data, given in equation (1), the thermal noise displacement amplitude 
spectral density scales as ω−5/2, whereas the QRPN scales as ω−2. This difference 
indicates that the QRPN will dominate over thermal noise at high frequencies if 
these scaling laws hold. At frequencies much larger than the fundamental reso-
nance, thermal noise from equation (1) can be approximated to:
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We may then write the ratio of QRPN to thermal noise as:
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Contrary to traditional cavity optomechanics, a low mechanical resonance fre-
quency is advantageous. This calculation assumes a single mechanical degree of 
freedom, but as we can see from the measurements, coupling from other modes 
will also be important. In our system, the scaling law for thermal noise begins to 
break down at around 30 kHz due to the coupling of the drumhead mode of the 
microresonator. Despite that limitation, the scaling of thermal noise with frequency 
is a key factor that allows QRPN to be measured.
Additional evidence of QRPN. To provide additional evidence that the displace-
ment noise that we are measuring is a result of QRPN, we perform three more 
checks. First, we verify that this excess noise is not caused by optical heating of 
the microresonator. Second, we measure a transfer function from the amplitude 
modulations going into the cavity to our measurement photodetector PDM and 
show that the cavity acts as a parametric amplifier. Last, we use the same transfer 
function to project how much displacement would be caused if the ingoing ampli-
tude fluctuations were shot noise limited.

The effect of bulk heating of the cantilever, which could mimic QRPN, must 
be ruled out. Owing to the structural damping observed in our device, the mirror 
motion is dominated by thermal noise below 10 kHz, while still being QRPN-
limited above. The low-frequency thermal noise may be used as a thermometer to 
measure any heating as a result of higher circulating power. To explain the factor 
of two increase in noise observed at 20 kHz between low and high power as a result 
of heating, the temperature would have had to increase by a factor of 4. We can 
rule out this large increase in temperature by observing that the measured noise at 
frequencies dominated by thermal noise (between 1 kHz and 2 kHz for example) 
only increases by 2%, which is within measurement uncertainty.

To show that the cavity acts as an optical parametric amplifier, we measure the 
transfer function of amplitude modulations of the input light to the light detected 
at PDM. This frequency-dependent transfer function is written as:
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To perform this measurement, we modulate the amplitude of the input light 
using the second amplitude modulator in Fig. 1 and measure the response at PDM. 
We then perform this measurement again with the cavity unlocked (far from reso-
nance), with the same amount of power incident on PDM. The measurements show 
that the cavity acts to parametrically amplify the intensity fluctuations incident on 
the cavity by a constant factor of 4.2 at frequencies below the optical-spring fre-
quency. This parametric amplification is a result of the radiation pressure coupling.

Furthermore, to quantify the displacement noise resulting from this coupling, 
we multiply TFAM by the shot noise level of the effective input power to the cavity. 
We then apply our calibration transfer function TFcal to the result to calibrate the 
displacement noise into units of length. This procedure is outlined in the equations 
below, where
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is the amount of effective vacuum fluctuations that enter the cavity. The projected 
displacement noise is calculated as:
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The power used to calculate �Peff  is scaled from the input power (Pin), because 
the input port only accounts for part of the vacuum fluctuations that enter  
the cavity; the rest enter from the other cavity losses. This calculation projects  
the coupling of shot noise to the measurement via radiation pressure on the  
cantilever. The result of this calculation, shown in Extended Data Fig. 6, agrees 
with the modelled QRPN, and independently confirms the expected level of 
QRPN.

Data availability
The data pertaining to this study are available from the corresponding authors 
upon reasonable request.
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Extended Data Fig. 1 | Full noise budget. For the measurement with 
220 mW circulating power, each noise source that contributed to the sum 
of subdominant noises in Fig. 2 is shown (see key). The narrow peaks in 

the displacement noise measurement are a result of parametric nonlinear 
coupling between various mechanical modes, and this coupling is 
negligible at low circulating powers.
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Extended Data Fig. 2 | Dependence of thermal noise on circulating 
power as caused by change in beam position. a, The total displacement 
noise around the yaw mechanical mode for each of the four circulating 
power levels (see key). b, As a but centred on the pitch mechanical mode. 
In these measurements, thermal noise is the dominant noise source at 
frequencies near the mechanical resonances. The thermal noise around 
the pitch mode decreases from 73 mW to 110 mW of circulating power, 

and then increases at 220 mW. This change is consistent with the cavity 
mode passing through the nodal point of this mode at an intermediate 
power level. Each panel includes an image from the finite element 
model depicting the motion associated with the mechanical mode. In 
both images, the blue portion represents a positive displacement from 
equilibrium (thin black outline), and the red area denotes a negative 
displacement. The nodal line for the mechanical modes is drawn in white.
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Extended Data Fig. 3 | Comparison of thermal noise spectra at 
different alignments. The effect of the change in beam position is seen 
in the change of height of the peaks in the displacement spectrum at the 
frequencies of the higher-order mechanical modes. The blue curve is taken 
with 10 mW of circulating power with a cavity mode alignment similar to 

the QRPN measurement with 220 mW circulating power. The green curve 
is for an alignment to minimize the coupling of the pitch and yaw modes at 
10 mW circulating power. The red curve is based on a model that sets the 
modal mass of the higher-order modes so that the peaks match those in 
the displacement measurement shown in Fig. 2.
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Extended Data Fig. 4 | Effect of uncertainty in detuning and loss. 
Modelled quantum displacement noise at 20 kHz and 220 mW of 
circulating power is shown as a function of intracavity loss and cavity 
detuning: the optical-spring frequency, which has been precisely 

measured, is held constant in the model. To be conservative, the range in 
values for the cavity loss and detuning in this figure are much larger than 
the constraints obtained by measurements of the optical spring.
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Extended Data Fig. 5 | QRPN as a function of frequency and power. 
This contour plot shows what fraction of the total measured displacement 
noise power spectral density (PSD) is contributed by QRPN, as a function 
of measurement frequency and circulating power. The quantity shown on 
the colour scale at right is the ratio of the PSDs of the QRPN model to the 
total measured noise. Whereas in the rest of this Letter we present the data 
as amplitude spectral densities in order to put them in the perspective of 
GW measurements, we use PSDs to calculate percentage and ratios, and 

to make this figure, because all the noises are added in quadrature to make 
up the total noise. We interpolate the data between the measurements at 
73 mW, 110 mW, 150 mW and 220 mW. The vertical stripe at 876 Hz is an 
artefact of the fundamental resonance not being perfectly resolved in the 
measurement. The blue vertical stripes at 3.7 kHz, 15 kHz and 28 kHz are 
higher-order mechanical modes of the microresonator. The contours are at 
a spacing of 0.05 (5%).
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Extended Data Fig. 6 | Projected QRPN. Shown is the measured 
QRPN level obtained by multiplying the transfer function measurement 
TFAM by the shot noise of the effective cavity input power and applying 

the calibration procedure, as described in Methods. The result of this 
calculation agrees with the modelled QRPN.
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Extended Data Table 1 | Standard optomechanical parameters

The table shows the measured parameters for our optomechanical system. The parameters in the top half of the table are used in our predictions of noise in the system. The bottom half of the table 
shows the common optomechanical parameters for comparison with the current state-of-the-art optomechanical systems. As explained in the text, the parameters from the bottom half are typically 
used to characterize on-resonance systems and are not used in our calculations.
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