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Wepresent the experimental observation of an optical spring
without the use of an optical cavity. The optical spring is
produced by interference at a beam splitter and, in principle,
does not have the damping force associated with optical
springs created in detuned cavities. The experiment consists
of a Michelson–Sagnac interferometer (with no recycling
cavities) with a partially reflective GaAs microresonator as
the beam splitter that produces the optical spring. Our
experimental measurements at input powers of up to
360 mW show the shift of the optical spring frequency as
a function of power and are in excellent agreementwith theo-
retical predictions. In addition, we show that the optical
spring is able to keep the interferometer stable and locked
without the use of external feedback. © 2018 Optical
Society of America

OCIS codes: (120.4880) Optomechanics; (120.3180) Interferometry;

(230.3990) Micro-optical devices; (230.4910) Oscillators.
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Optomechanical cavities consisting of a movable mirror or
resonator allow the electromagnetic radiation of the cavity
mode to couple to the motion of the mechanical oscillator.
Optomechanical cavities have been proposed for improving
the sensitivity of gravitational wave detectors below the stan-
dard quantum limit, tests of quantummechanics, and quantum
information [1].

One feature resulting from coupling light to a mechanical
resonator in a cavity is the optical spring effect, which was first
discussed for Fabry–Pérot cavities by Braginsky [2,3]. For the
traditional case of the Fabry–Pérot cavity, the optical spring is
created in a detuned cavity where the cavity’s circulating power
and, therefore, the radiation pressure force on the mirrors, is
proportional to the cavity length [4]. For a blue-detuned cavity
in which the cavity’s resonance frequency is less than the
laser frequency, the linear relationship between the radiation

pressure force and cavity length creates a positive restoring force
with an effective spring constant K OS and an antidamping force
ΓOS. The combination of the optical spring constant and the
mechanical spring constant of the device shift the resonance
frequency of the system from Ωm to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

m �Ω2
OS

p
where

Ωm is the resonance frequency of the mechanical oscillator,
and ΩOS is the optical spring frequency [4–6]. This frequency
shift is an experimental signature of the optical spring.

The antidamping force created by the optical spring can
overwhelm the mechanical damping and lead to dynamic in-
stabilities [7–9] and is usually controlled with feedback loops
[6–8]. An alternative method to stabilizing the optical spring is
to modify the damping force by adding a second optical spring
[10,11] or utilizing thermo-optic effects [12,13].

Although the detuned Fabry–Pérot cavity is the canonical
example of creating an optical spring, it is possible to create
an optical spring in other topologies. An optical spring can
be created in any system that is able to produce a linear relation-
ship between the radiation pressure force and displacement.
Dual-recycled gravitational wave detectors such as Advanced
LIGO [14] and Advanced Virgo [15] are able to create an
optical spring in the signal recycling cavity by detuning the
signal recycling mirror [16,17]. An optical spring can also
be produced in a membrane in the middle setup [18,19] or
a Michelson–Sagnac interferometer with a tunable signal recy-
cling mirror at the dark port [20,21].

These examples, however, still rely on the use of a cavity to
produce the optical spring. In this Letter, we present the mea-
surement of an optical spring produced by the interaction of
two input fields at a beam splitter, which we will refer to as
the microresonator, similar to the scheme outlined in Ref. [22].
To achieve this, we utilize a Michelson–Sagnac interferometer
for simplicity. Previous results using a Michelson–Sagnac inter-
ferometer have included a signal recycling mirror and have not
directly observed the frequency shift that accompanies the op-
tical spring [21]. We measure the optical spring at input powers
of 50, 100, 200, and 360 mW and compare our experimental
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results with a theoretical model. The optical springs created at
all four input powers are strong enough to keep the interfer-
ometer stable and locked without the use of any external elec-
tronic feedback or additional optical fields.

The optomechanical setup is shown in Fig. 1. The in-air
Michelson–Sagnac interferometer contains a partially reflective
microresonator as the end/common mirror of the interferom-
eter. The Michelson–Sagnac topology was used to simplify the
alignment of the laser beams onto the microresonator. The
microresonator is similar to the one used in Refs. [6,11] and
described in Refs. [23,24], but consists only of a 358 nm thick
GaAs cantilever without the highly reflective stack of crystalline
Al0.92Ga0.08As∕GaAs layers. The GaAs microresonator has a
power reflectivity of Rosc � 65% for the laser wavelength of
λ � 1064 nm. The microresonator has a diameter of 140 μm,
a mass of about 30 ng, a natural mechanical frequency of
Ωm � 2π × 850 Hz. The quality factors for the fundamental
and yaw resonances are Qmf

� 5 and Qmy
� 13, respectively,

and are obtained by matching the theoretical model to the mea-
sured data. The low mechanical Qs are the result of performing
the experiment in air. A photomicrograph of the microresona-
tor is included as a subset in Fig. 1(c).

To realize the optical spring, let us first consider the micro-
resonator and its associated normalized fields, as shown in
Fig. 1(b) [25]. Each of the normalized input fields a and d
receives half the power from the laser source, and we allow
for a phase shift in d , accounting for the difference between
the path lengths. We assume that the motion of the microre-
sonator is small and that the path length difference remains
constant, so we relate the normalized fields:

a �
ffiffiffiffiffi
P0

2

r
, (1)

b � ρa� τd , (2)

c � τa − ρd , (3)

d �
ffiffiffiffiffi
P0

2

r
eiϕ, (4)

ϕ � Lω0

c
, (5)

where ρ and τ are the amplitude reflectivity and transmissivity
such that ρ2 � τ2 � 1, ω0 is the laser frequency, P0 is the laser
power incident on the beam splitter cube (BSC), and L and ϕ
are the difference in length and phase of the two interferometer
arms, respectively. We solve the equations and find the net
power leaving the microresonator

Pnet � jbj2 − jcj2 � 2ρτP0 cos ϕ: (6)
To understand why we are interested in the net power

leaving the microresonator, consider the forces acting on the
microresonator. The net force from a, b, c, and d is

F net � �Pa � Pb − Pc − Pd �∕c: (7)
If the input powers Pa and Pd are balanced, then a nonzero

value for Pb − Pc gives rise to a net force on the microresonator
exerted by radiation pressure FRP � Pnet∕c. For small displace-
ments δL around an equilibrium position, the microresonator
experiences the differential force

δFRP �
1

c
dPnet

dL
δL, (8)

which can be expressed as the equivalent spring constant

K OS � −
1

c
dPnet

dL
� 2

c2
ωP0ρτ sin�ϕ�: (9)

KOS is purely real, indicating that it provides a restoring
force without the addition of a damping force that normally
arises from the imaginary part of KOS. While damping from
the Doppler effect does exist, it is very small in comparison
to the mechanical damping in the system. The maximum
KOS occurs for a path difference of ϕ � π∕2, as shown
in Fig. 2.

One of the arms of the interferometer contains a steering
mirror which is mounted onto a piezoelectric device. The piezo
mirror is used to control the phase difference between the two
arms of the interferometer and to lock the interferometer. The
steering mirrors on either side of the microresonator have a
power reflectivity of 94% to allow for some of the light to
be used for locking the interferometer. The interferometer is
locked by taking the signal from either PDDP, PDA, or PDB,
filtering it, and feeding it back to the piezo mounted to the
mirror in one of the arms of the interferometer. The relative

Laser

M1
R = 94%

Microresonator

Piezo MirrorM2
R = 94%

BSC 
R = 42%
T = 45%

PDDP 

Camera

a

b

c

d

(b)

(a)

c)

PDB 

PDA 

Fig. 1. Schematic of the experimental optomechanical setup. The
Nd:YAG laser is split into two beams by a BSC and directed towards
the partially reflective microresonator. One arm of the interferometer
contains a steering mirror attached to a piezoelectric device that gen-
erates a phase difference ϕ between the two arms of the interferometer.
Both arms contain partially transmissive steering mirrors (M1 andM2)
that allow some of the reflected and transmitted light to be detected for
locking the interferometer. The two reflected and two transmitted
beams from the microresonator interfere at the BSC and are detected
by a photodetector (PDDP). (b) Fields a and d are incident on the
microresonator from opposite sides. The input fields are supplied
by a laser of power P0 and frequency ω0 with a and d each receiving
about half the total power. The microresonator has power reflectivity
Rosc � ρ2 � 65%. (c) Photomicrograph of the microresonator with a
diameter of 140 μm supported by a 200 μm long by 20 μm wide
cantilever structure.
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phase difference between the two interferometer arms can be
adjusted by tuning the locking setpoint on the PID controller.

We measure the optical spring effect by measuring the op-
tical response of the system. This is performed by modulating
the piezo in the interferometer and measuring the resulting
power fluctuation at one of the photodetectors as a function
of the modulating frequency. In the absence of an optical
spring, we should measure a featureless response. However,
with an optical spring, we measure the effective closed loop gain
of the optomechanical system:

Gcl �
1

1� GOS

�
Ω2

mf
−Ω2 � iΩΓmf

�Ω�
Ω2

mf
−Ω2 � iΩΓmf

�Ω� �Ω2
OS

, (10)

�
Ω2

my
− Ω2 � iΩΓmy

Ω2
my

− Ω2 � iΩΓmy
�Ω2

OS

, (11)

as described in Ref. [6] where the first term is for the funda-
mental mode, and the second term is for the yaw mode with
Γmf

and Γmy
being the mechanical damping for fundamental

and yaw modes, respectively. The contribution from the yaw
mode is a result of the laser beam not being perfectly centered
on the microresonator. The position-dependent coupling of the
optical spring to the yaw mode is analogous to attaching a
mechanical spring to different points on the microresonator.

We lock the interferometer at the mid-fringe point of PDB,
which corresponds to the point at which the optical spring is
largest, as shown in Eqs. (6) and (9), and in Fig. 2. We measure
the transfer function at input powers of 50, 100, 200, and
360 mW, as shown in Fig. 3. The optical spring peak is visible
in each of the measurements at frequencies of 1000, 1120,
1310, and 1640 Hz, as well as a dip corresponding to the fun-
damental mechanical resonance at about 850 Hz. The effect of
the optical spring is also visible on the yaw mode of the micro-
resonator at 4.2 kHz.

An interesting feature of the system is its ability to remain
locked without any external feedback. At all four input powers,
the optical spring is strong enough to stabilize the system
and keep the interferometer locked at a desired fringe setpoint

without the application of any feedback. Unlike the traditional
case of the optical spring in a detuned Fabry–Pérot cavity where
the antidamping of the optical spring must be controlled using
electronic feedback or another method, our system does not
have an antidamping term and, therefore, is stable as a result
of the restoring force provided by the optical spring. External
disturbances at frequencies below the optical spring frequency
are suppressed by a factor of approximately

1

Gcl

≈
Ω2

OS

Ω2
m
≈ 4, (12)

for the 360 mW measurement at low frequencies [5,6]. The
stability of the system is visible in Fig. 3, where the noise at
300 Hz is suppressed by a factor of up to 11.6 dB or a mag-
nitude of approximately 4. The measurements shown in Fig. 3
are taken with the interferometer locked with the PID control-
ler to avoid overly exciting a resonance and causing the system
to lose lock. Further suppression of the external disturbances
could be achieved by increasing the optical spring frequency
by increasing the input power.

In conclusion, we have shown the measurement of the
optical spring from a beam splitter in a Michelson–Sagnac
interferometer, without the use of a cavity. The measurements
at input powers of 50, 100, 200, and 360 mW clearly show the
change in the system’s resonance frequency created by the op-
tical spring effect and match well with theoretical predictions.
The optical spring created at all four input powers is strong
enough to keep the interferometer stable and locked to the
desired fringe setpoint and reduces disturbances at 300 Hz
by up to 11.6 dB.

In the future, we would like to investigate the possibility of
using the partially reflective microresonators in experiments

Fig. 2. Plot of the normalized power at the side photodetectors
and of the normalized KOS as a function of ϕ. The interferometer
is locked at approximately ϕ � π∕2, where the optical spring effect
is largest.
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Fig. 3. Measurements (solid) and theoretical model (dashed) of
the optical spring at input powers of 50, 100, 200, and 360 mW.
The measured transfer function is taken by injecting a signal to the
PID controller connected to the piezo mirror in one arm of the inter-
ferometer and measuring its effect at PDDP. The dip at about 850 Hz
corresponds to the fundamental mechanical resonance of the micro-
resonator, and the feature at 4.2 kHz is the optical spring coupled to
the yaw mode of the microresonator.
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with quantum radiation pressure noise. As a result of not hav-
ing the highly reflective stack of crystalline Al0.92Ga0.08As∕
GaAs layers, the mass of these microresonators is lower than
the highly reflective microresonators. The reduction in mass,
m, increases the signal-to-noise ratio of the quantum radiation
pressure noise over the thermal noise by a factor of

ffiffiffiffi
m

p
. We

also aim to measure the mechanical dissipation as a function of
frequency to investigate thermal noise models. In addition,
the microresonators could have use in experiments studying
unstable optomechanical filter cavities, such as those proposed
in Ref. [26].

Funding. National Science Foundation (NSF) (PHY-
1150531).
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