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Metrology experiments can be limited by the noise produced
by the laser involved via small fluctuations in the laser’s
power or frequency. Typically, active power stabilization
schemes consisting of an in-loop sensor and a feedback con-
trol loop are employed. Those schemes are fundamentally
limited by shot noise coupling at the in-loop sensor. In this
Letter, we propose to use the optical spring effect to passively
stabilize the classical power fluctuations of a laser beam. In
a proof of principle experiment, we show that the relative
power noise of the laser is stabilized from approximately
2× 10−5 Hz−1/2 to a minimum value of 1.6× 10−7 Hz−1/2, cor-
responding to the power noise reduction by a factor of 125.
The bandwidth at which stabilization occurs ranges from
400 Hz to 100 kHz. The work reported in this Letter further
paves the way for high power laser stability techniques which
could be implemented in optomechanical experiments and in
gravitational wave detectors. © 2022 Optica Publishing Group

https://doi.org/10.1364/OL.456535

Introduction. Laser power stabilization is important for many
modern experiments, since power fluctuations can limit their
sensitivity [1,2]. Currently, interferometric gravitational wave
detectors require the most stringent power stability levels, where
a relative power noise (RPN) of roughly 2 × 10−9 Hz−1/2 is
required at 10 Hz by the Advanced LIGO detectors [3]. A third
generation of gravitational wave detectors is currently being
planned, which will most likely require even higher power sta-
bility. So far, strict requirements at low frequencies were mostly
achieved using active power stabilization schemes, where an in-
loop photodetector is used in conjunction with a feedback control
loop. Those schemes are usually limited by noise sources cou-
pling in the in-loop detector, and often require a large power
detection which can exceed the power threshold of the in-loop
sensors [4]. Recently, an alternative technique was demonstrated
in which the full beam power of the laser and its fluctuations

are sensed via a Michelson interferometer with a movable mir-
ror [5]. In this Letter, we propose to use a movable mirror in a
Fabry–Perot cavity with a strong optical spring. The technique
demonstrated in this paper is passive, and thus does not require a
power sensor. We show here that this technique can provide large
suppressions of classical power fluctuations such as to produce
a beam in transmission of the cavity which is shot noise lim-
ited. In [5], a transfer and a sensing beam are used with a single
movable cantilever mirror to demonstrate active power stabiliza-
tion from 1 Hz to 10 kHz. Here, we instead use a Fabry–Perot
cavity with a strong optical spring to passively stabilize the
power fluctuations transmitted by the cavity. Unlike other
power stabilization techniques employing optical cavities [6],
the experiment proposed here provides power noise reduction
below the cavity pole. This is an advantage, since it dispenses
the use of long and high finesse cavities for stabilization at low
frequencies.

We first start with a cavity comprising a movable end mir-
ror pumped with a laser (see Fig. 1). By detuning the cavity
away from its resonance, an optical spring [7] is formed, whose
dynamic response reduces power fluctuations in transmission of
the cavity. To show that an optical spring can passively stabilize
the power fluctuations of a laser, we first start with the equation
of motion of the movable mirror:

mẍ = Frad + Fres + Fext, (1)

where Frad is the force on the mirror due to radiation pressure,
Fres is the restorative spring force, Fext is any external force, such
as thermal noise, and m is the mass of the mirror. Equation (1)
in the frequency domain then becomes

− mΩ2x̃ =
2P̃circ

c
− kx̃ + F̃ext, (2)

where c is the speed of light, k is the spring constant correspond-
ing to the restorative mechanical spring force of the movable
mirror, and Pcirc is the circulating power in the cavity.
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Fig. 1. Simplified experimental setup of the passive laser power
stabilization scheme via an optical spring. Here, PDL is used solely
to stabilize the optical spring above 100 kHz and not for active
power stabilization.

The power fluctuations (∆Pcirc) inside the cavity are dependent
on the motion of the movable mirror and on the change of the
maximally circulating power (∆Pmax) at resonance in the cavity,
which in turn depends on the fluctuations of the injected laser
power. These fluctuations can be written as

∆Pcirc =
dPcirc

dx
∆x +

dPcirc

dPmax
∆Pmax. (3)

The circulating power in the cavity can be written in terms of
the detuning (δ, in units of linewidth) and the maximum power
circulating in the cavity (Pmax) as [7]

Pcirc(δ) =
Pmax

1 + δ2 . (4)

Additionally, the position of the movable mirror can be written
in terms of the detuning as [7]

x =
δλA
8π

, (5)

where λ is the wavelength of light and A, the total losses of the
mirrors, including their transmissivity, in which A = 0 is two
perfectly reflective mirrors. Given the equations for power in
terms of detuning (Eq. (4)) and position in terms of detuning
(Eq. (5)), it is useful to rewrite Eq. (3) as

∆Pcirc =
dPcirc

dδ
dδ
dx
∆x +

dPcirc

dPmax
∆Pmax. (6)

Plugging in respective derivatives into Eq. (6) yields

∆Pcirc = −
16πPmaxδ

λA(1 + δ2)2
∆x +

∆Pmax

1 + δ2 . (7)

Solving Eq. (2) for ∆x to use in Eq. (7) yields

∆Pcirc =
Kos∆Pcirc

m(Ω2 −Ω2
fund)
+
∆Pmax

1 + δ2 +
cKos∆Fext

2m(Ω2 −Ω2
fund)

, (8)

where we have dropped the tilde notation and made the
substitution for the optical spring constant Kos: [8]

Kos =
32πPmaxδ

λAc(1 + δ2)2
. (9)

Note that this equation for the optical spring constant assumes
that the response of the cavity is sufficiently slow such that it may
be regarded as instantaneous. Solving Eq. (8) for the intracavity
power fluctuations yields

∆Pcirc =
∆Pmax

1 + δ2

(︃
Ω2 −Ω2

fund

Ω2 −Ω2
os −Ω

2
fund

)︃
−

c
2
∆Fext

(︃
Ω2

os

Ω2 −Ω2
os −Ω

2
fund

)︃
,

(10)

whereΩfund is the resonance frequency of the fundamental mode
of the cantilever mirror and Ωos is the optical spring frequency,
where both are defined as

Kos = mΩ2
os and k = mΩ2

fund. (11)

An independent calculation of Eq. (10) can be found in [9].
For frequencies much smaller than the cavity pole, the con-

nection between power fluctuations at the cavity input (∆Pin)
and the intracavity power fluctuations on resonance is ∆Pmax =

PB ∗ ∆Pin, where PB is the power buildup of the cavity. Hence,
as seen from Eq. (10), for frequencies much less than the optical
spring resonance frequency (Ω ≪ Ωos) and much greater than
the fundamental mode of the cantilever mirror (Ω ≫ Ωfund), the
power fluctuations in the cavity are reduced compared to the
injected field’s power fluctuations by a factor of ( Ω

Ωos
)2. We can

also see that the external force, Fext, imprints power fluctuations
on the laser beam and will limit the stability achievable by this
scheme. We have chosen an entirely classical derivation due
to the fact that quantum radiation pressure effects are evaded
when measuring the amplitude quadrature in transmission of
the cavity [10].

The schematic of the experiment used to demonstrate this
power fluctuation reduction is shown in Fig. 1. It consists of an
optomechanical cavity kept at cryogenic temperatures (∼ 30 K).
The cavity is pumped with a 1064-nm Nd:YAG nonplanar ring
oscillator (NPRO) laser and is housed in a vacuum chamber
kept at 10−8 Torr. The movable mirror used in this setup is a
cantilever mirror [7] with a mass of 50 nanograms, a fundamen-
tal frequency of 876 Hz, and a quality factor of approximately
25,400. We note here that this quality factor is much larger than
in previous experiments (16,000) [10,11] due to the reduced
temperature and pressure of the cryogenically cooled cavity.
The input mirror in the cavity is a 0.5-inch diameter, rigidly
mounted mirror with a radius of curvature of 1 cm. The cavity
is just under 1 cm long, with a pole greater than 100 kHz. Inside
the vacuum chamber, there is a vibration isolation platform to
which all the optics are mounted, reducing seismic vibrations
above 400 Hz. The requirement to keep a system like this sta-
ble is usually a positive optical spring constant and a positive
damping coefficient [12,13], but is not the case for our system.
To keep the configuration of the cavity stable, we employ a feed-
back loop actuating on an amplitude modulator (AM2 in Fig. 1).
This ensures the cavity stays at a constant detuning during a
measurement. This feedback loop uses a photodetector (PDL in
Fig. 1) in transmission of the cavity as the in-loop sensor and
applies relevant correction signals to AM2 only for frequencies
close to the optical spring frequency (i.e., above 100 kHz for the
red curve in Fig. 2). This feedback loop does not provide any
power stabilization of the injected beam. Another photodetec-
tor in transmission of the cavity is used to monitor the power
noise of the transmitted beam, labeled PDM. Additional details
describing the experimental setup can be found in [11,14].

To demonstrate the power stabilization we inject white noise
into the amplitude modulator before the cavity, AM1, at a voltage
yielding baseline relative power fluctuations of approximately
2 × 10−5 Hz−1/2. This is done to demonstrate that a large noise
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Fig. 2. Amplitude spectral density measurements showing reduction of classic power noise. White noise is added to the free running laser
noise to bring the overall noise level up to approximately 2 × 10−5 Hz−1/2. The blue curve represents a cavity detuning of 3.6 linewidths and
the red curve a detuning of 1.5 linewidths. The large features at 3.7 kHz, 15.5 kHz, and 28.5 kHz are the coupling from the yaw, pitch, and
side-to-side modes, respectively, of the cantilever mirror.

Fig. 3. 70 µW power noise spectrum post cavity measurement with its associated fundamental noise limitations, which includes relative shot
noise, the calculated (modeled) RPN, and projected suppression of the cavity. The circulating power corresponding to 70 µW of transmitted
power is 250 mW.

suppression is possible, since the free running relative power
noise of the laser is at roughly 4 × 10−6 Hz−1/2 without the noise
injection.

Results. Figure 2 shows the results of the laser power sta-
bilization for different optical spring strengths. The blue and
red curves represent the cavity locked at a detuning correspond-
ing to an optical spring frequency of 53 ± 2 kHz and 150 ± 3
kHz, respectively. These optical spring frequencies correspond
to a power transmitted by the cavity and incident on PDM of
15.2 and 70 µW, respectively. Additionally, the input power for
both these measurements is 6.5 mW. The black curve represents
the sum of the free running laser noise and the intentionally
imprinted white noise, which is measured at a photodetector
just after AM1, not pictured in Fig. 1. As seen from Fig. 2,
the injected noise is suppressed by a greater amount with a
stronger optical spring, as expected from Eq. (10). The max-
imum suppression of the stronger optical spring measurement
occurs at 7900 Hz with a stabilized noise level of 1.6 × 10−7

Hz−1/2. This corresponds to the optical spring suppressing the
injected noise by a factor of 125. The blue curve measured for a
cavity detuning of 3.6 linewidths has a steeper feature below 10
kHz due to being thermal noise limited, whereas the red curve
(1.5 linewidths detuned) is mainly shot noise limited. Above 10

kHz, both curves are limited by the noise suppression provided
by the optical spring. For frequencies below 500 Hz, the noise
is dominated by unsuppressed environmental vibrations.

Figure 3 compares the highest power noise suppression
measurement (red curve) with an uncorrelated sum of funda-
mental limits of this experiment (blue curve) and the power
noise suppression by the optical spring. These fundamental lim-
its comprise the relative shot noise and thermal noise of the
cantilever mirror added in quadrature. The total limit for the
relative power noise detected by PDM can be obtained by divid-
ing Eq. (10) by the mean circulating power Pcirc, since below the
cavity pole, the classical RPN transmitted by the cavity (RPNM)
should be the same as the classical RPN inside the cavity. Hence,
the amplitude spectral density (ASD) of the RPN at PDM is

RPNM
2 = RPNin

2
(︃
Ω2 −Ω2

fund

Ω2 −Ω2
os −Ω

2
fund

)︃2

−

(︃
cFext,ASD

2Pcirc

)︃2 (︃
Ω2

os

Ω2 −Ω2
os −Ω

2
fund

)︃2

+
2hc
λPM

,
(12)

where RPNin and Fext,ASD are the ASD of the RPN at the input of
the cavity, and of the external force. The first term in Eq. (12)
represents the power noise suppression by the optical spring. The
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third term in Eq. (12) is the relative shot noise of the measured
power on PDM, where h is Planck’s constant, and PM is the
mean power transmitted by the cavity and detected on PDM.
This relative shot noise level is additionally corroborated by
measuring the shot noise of the photodetector experimentally.
Both by experimental methods and the relative shot noise term
in Eq. (12), the average shot noise level was determined to be
7.3 × 10−8 Hz−1/2 and is depicted by the brown curve in Fig. 3.
The next part in the fundamental limits curve is the thermal
noise term contribution:

RPNtn =

(︃
Ω2 −Ω2

fund

Ω2 −Ω2
os −Ω

2
fund

)︃
cΩfund

Pcirc

√︄
kbTm
QΩ

, (13)

where Ωfund is the fundamental resonance frequency of the can-
tilever mirror, Q is the structural quality factor of the movable
mirror, T is the temperature, and kb is the Boltzmann constant.
This equation was calculated by substituting Fext in Eq. (12)
by the thermal noise force considering structural damping [15]
and is the minimum relative power noise in transmission of the
cavity, limited by thermal noise of the movable mirror. This
quantity is a similar result as obtained in [5,16], but here with
a dependence on the intracavity power. This is an advantage for
this scheme since a trade off of using a mirror with a high spring
constant can be made by increasing the intracavity power.

Because the laser beam is not perfectly centered on the mov-
able mirror, we see a coupling of the cantilever modes, pitch
(3.7 kHz), yaw (15.5 kHz), and side-to-side (28.5 kHz), in our
measurement. If the beam was perfectly aligned, these features
would not be observed. To account for this in our fundamen-
tal limits, we use a modeling code that uses the two-photon
formalism [17] that accounts for the centering of the beam
when calculating thermal noise. The result for the thermal noise
model in this experiment is shown by the lilac curve in Fig. 3.
The temperature recorded for these measurements refers to the
upper limit of the temperature of the cavity. This is because
the cryostat introduces mechanical vibrations strong enough to
interfere with the locking capabilities of the cavity. For this rea-
son, the cryostat compressor is turned off and the cavity slowly
warms as the measurement is performed. Generally, by the time
a measurement is finished, the cavity is at ∼30 K.

The final contribution to the total limit is the residual input
noise limited by the suppression by the optical spring. This
is calculated by taking the injected noise and multiplying by
the suppression term (first term) in Eq. (12). For the param-
eters of the stronger optical spring measurement, the optical
spring has the potential to provide a power noise suppression of
approximately 3 × 104 at 10 Hz. This factor is quite large and
thermal or quantum noise typically limit the performance at low
frequency.

Given these parameters, we find the total noise budget agrees
with the measured spectrum for most frequencies. At low fre-
quencies, the experiment is limited by seismic noise, hence the
additional noise in the measurement with respect to the blue
curve in Fig. 3. In theory, it is possible to lock a Fabry–Perot
cavity like this one without the use of feedback, instead using
a large, positively detuned carrier beam and a small, negatively
detuned sub-carrier beam [12,13]. This has been tested to show
the stability of the double optical spring effect, but not yet on
its ability to stabilize the power of the laser. In this regime how-
ever, it would be possible to lock the cavity and have the power
stabilized without the use of feedback anywhere.

To achieve a lower RPN and a larger power in transmis-
sion of the cavity, the input power, and therefore the circulating
power, needs to be increased. This reduces the contribution from
thermal noise and shot noise, as shown in Eq. (12). In this exper-
iment, the circulating power of 250 mW, corresponding to an
intensity incident on the movable mirror of 55 kW/cm2, was
limited by the damage threshold of the micro-oscillators. How-
ever, the suspended mirrors described in [18], as well as [19],
use parameters that could provide a total RPN close to the needs
of current gravitational wave detectors. With a 5-mg suspended
mirror having a resonance of the order of 10 Hz, Q of 1 × 105,
an intracavity power of 200 W, and a temperature of 20 K, we
find that the RPN for such a system would be 1.4 × 10−9Hz−1/2

at 10 Hz and 4.4 × 10−10Hz−1/2 at 100 Hz. These parameters are
realizable and would give the RPN levels necessary for aLIGO.
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