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Cooling-by-measurement and mechanical state
tomography via pulsed optomechanics
M.R. Vanner1, J. Hofer1, G.D. Cole1 & M. Aspelmeyer1

Observing a physical quantity without disturbing it is a key capability for the control

of individual quantum systems. Such back-action-evading or quantum non-demolition

measurements were first introduced in the 1970s for gravitational wave detection, and now

such techniques are an indispensable tool throughout quantum science. Here we perform

measurements of the position of a mechanical oscillator using pulses of light with a duration

much shorter than a period of mechanical motion. Utilizing this back-action-evading inter-

action, we demonstrate state preparation and full state tomography of the mechanical

motional state. We have reconstructed states with a position uncertainty reduced to

19 pm, limited by the quantum fluctuations of the optical pulse, and we have performed

‘cooling-by-measurement’ to reduce the mechanical mode temperature from an initial 1,100

to 16 K. Future improvements to this technique will allow for quantum squeezing of

mechanical motion, even from room temperature, and reconstruction of non-classical states

exhibiting negative phase-space quasi-probability.
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E
xperiments are now beginning to investigate non-classical
motion of massive mechanical devices1–3. This opens
up new perspectives for quantum-physics-enhanced

applications and for tests of the foundations of physics. A
versatile approach to manipulate mechanical states of motion is
provided by the interaction with electromagnetic radiation,
typically confined to microwave or optical cavities. Such cavity-
optomechanics experiments4–8 have thus far largely concentrated
on high-sensitivity continuous monitoring of the mechanical
position9-14. Because of the back-action imparted by the probe
onto the measured object, the precision of such a measurement is
fundamentally constrained by the standard quantum limit
(SQL)15,16, and therefore only allows for classical phase-space
reconstruction9,17,18. In order to observe quantum mechanical
features that are smaller than the mechanical zero-point motion,
back-action-evading measurement techniques that can surpass
the SQL19-22 are required. Following the early insights of
Braginsky and Khalili15, beating the SQL ‘can be achieved only
in one way: design the probe so it ‘sees’ only the measured
observable’. Such back-action-evading techniques were first
realized for the detection of optical quadratures23–25 and have
now also been used for precision measurement of atomic
ensemble spin26–30 and quantum non-demolition microwave
photon counting31. In optomechanics, to perform a back-action-
evading measurement of the mechanical position, a time-
dependent measurement scheme is required. One prominent
example is the so-called ‘two-tone approach’22,32, which uses a
probe with an intensity that oscillates at twice the mechanical
frequency. The field probes the mechanics periodically and the
back-action imparted to the mechanical motion by the optical
probe does not affect the measurement of the mechanical
amplitude. This is closely analogous to a stroboscopic
measurement of the mechanical motion22. Using the two-tone
approach with a microwave probe field, a back-action-evading
interaction was recently realized to measure a single quadrature
of a nanomechanical resonator33.

Here we take a different tack to perform position measure-
ments of a mechanical oscillator using single optical pulses. Our
experimental approach employs optical pulses that have a
duration much shorter than a mechanical period of motion. This
provides a back-action-evading interaction for measuring the
mechanical position because the interaction leaves the position
unchanged, perturbing only the mechanical momentum, and was
first suggested by Braginsky et al.34 The precision of this pulsed
measurement process is no longer limited by the SQL but is
ultimately limited by the quantum optical phase noise. We
implement a pulsed protocol35, where one or two pulses are used
to prepare a motional state ‘by measurement’ and then a
subsequent pulse is used for state tomography. Mechanical state
preparation ‘by measurement’ is achieved by utilizing the
information gained from the pulsed measurement to update the
probability distribution that describes the motional state. The
experiments reported here have been performed in the weak
interaction regime, where the backaction itself is negligible;
however, the pulsed measurements have a dramatic effect on the
mechanical thermal state and the measurement precision we
achieved was limited by the quantum optical phase noise. We
therefore require a quantized description of the optical field;
however, it is important to note that at this stage all the
mechanical motional states presented here are classical, that is,
they can be described by an incoherent mixture of mechanical
coherent states. Our protocol can be used to prepare mechanical
states independent of the initial mechanical thermal occupation
and thus, no initial cooling of the mechanical motion is required.
Moreover, by contrast to continuous schemes, our pulsed
protocol has considerable resilience against the surrounding

mechanical thermal bath, as it can be performed on short time
scales35. Employing our pulsed approach, mechanical dynamics
rather than the steady-state can be conveniently probed and non-
equilibrium mechanical behaviour can be characterized. Also note
that pulsed quantum optomechanics operates fully in the so-
called ‘non-resolved sideband regime’, in which the cavity decay
rate is much larger than the mechanical frequency. Indeed,
all results reported here were obtained without the use of an
optical cavity.

Results
Experimental protocol. Our experimental setup is shown sche-
matically in Fig. 1a. Optical pulses are injected into a Mach-
Zehnder interferometer that has a micromechanical oscillating
mirror in one of the two interferometer paths. The pulses are first
divided by a beam-splitter that forms one intense beam that
acts as a local oscillator (LO) and one weak beam that we will
henceforth refer to as the signal. The signal is focussed onto and
reflects from a micromechanical oscillator (Fig. 1b). During the
reflection of the short optical pulse, changes to the position of the
mechanical oscillator are negligible. The coherent optical pulse
gains a phase shift in proportion to the mechanical position,
which is accurately described by a phase quadrature displace-
ment, as the mechanical position fluctuations are small. Con-
currently, the radiation-pressure force of the reflection imparts
momentum to the mechanical resonator. This momentum can be
decomposed into a classical component due to the mean photon
number and a component dependent upon the photon number
fluctuations. Quantitatively, this optomechanical interaction is
described by the input–output relations:

Xout
L ¼ Xin

L ; Pout
L ¼ Pin

L þ wXin
M;

Xout
M ¼ Xin

M; Pout
M ¼ Pin

Mþ wXin
L þO ð1Þ

Here, the subscripts label the light (L) and mechanics (M); X and
P are the dimensionless amplitude (position) and phase
(momentum) quadratures for the light (mechanics); w ¼
4px0

ffiffiffiffi
N
p

=l quantifies the quadrature information exchanged
between the light and the mechanics and determines the strength
of the mechanical position measurement and O ¼ 8px0N=l is
the classical momentum transfer to the mechanical oscillator
(N, mean photon number per pulse; l, optical wavelength;
x0 ¼ ð�h=2meffoMÞ1=2, mechanical ground state width; meff,
mechanical effective mass; and oM, mechanical angular fre-
quency). After the optomechanical reflection, the signal then
overlaps and interferes with the LO pulse on a 50/50 beam-
splitter, where the (mean) phase between the LO and signal
beams is set to be p/2. The intensities of both beam-splitter
outputs are measured by photodiodes, and the photocurrents are
subtracted to implement homodyne detection of the optical phase
quadrature. A typical difference current time trace is shown in
Fig. 1c, where the measurement outcome PL is the time integral
over the pulse duration of the difference current.

After the pulsed measurement, the mechanical state of motion
is changed as our knowledge of the mechanical position has
increased. For an initial thermal state of the mechanical resonator
with a large thermal occupation, that is, w2ð1þ 2�nÞ41, the means
and variances of the mechanical quadratures, upon obtaining the
measurement outcome PL are as follows35:

hXout
M i ’ PL=w; hPout

M i ¼ O;

s2
Xout

M
’ 1=ð2w2Þ; s2

Pout
M
¼ ðw2þ 1þ 2�nÞ=2; ð2Þ

where �n ’ kBT=�hoM is the mean occupation of the mechanical
mode when in thermal equilibrium with the environment at
temperature T4�hoM=kB. Notably the information gained from
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the measurement reduces the mechanical position variance from
�n to 1/(2w2), which does not depend on the initial occupation.
The resultant state of mechanical motion, following such a
measurement, is no longer in thermal equilibrium with the
surrounding environment and has a reduced effective thermal
occupation �neff ¼ ðs2

XM
s2

PM
Þ1=2� 1=2 ’ ð�n=ð2w2ÞÞ1=2. Moreover,

a subsequent pulse performed after one quarter of a period of
mechanical harmonic evolution can measure the mechanical
momentum at the time of the first pulse to further reduce the
effective occupation. This ‘cooling-by-measurement’ method for
entropy reduction, that is, obtaining mechanical position and
then momentum information on the initial state, is rapid and has
considerable tolerance to both the initial thermal occupation and
the surrounding thermal bath35. With future experimental
improvements, this scheme allows for the generation of high
purity and quantum-squeezed states of mechanical motion ‘by
measurement’. Owing to the resilience against mechanical
thermal noise, this scheme may provide a more feasible route
to quantum squeezing than parametric modulation9,17, which can
be combined with continuous measurement and feedback36.

In our experiment, one or two pulses are used to prepare
a mechanical state at a known time. Then a read-out pulse is
made after time y/oM of mechanical harmonic evolution to
sample the mechanical probability distribution of the y-rotated
quadrature, that is, a marginal. Repeating this process many
times and obtaining the marginals for a large number of
mechanical phase-space angles y is sufficient to uniquely
determine the mechanical quantum state of motion37. Quantum

state tomography by measurement of the marginals was first
realized with optical fields using homodyne interferometry38 and
has now become an indispensable tool in the field of quantum
optics39 being applied to other physical systems such as molecular
vibration40, spin ensembles41 and microwave fields42. Here we
implement such mechanical state tomography by utilizing the
pulsed measurement outcome probability distribution PrðPLÞ ¼R

dXMp� 1=2 exp½ � ðPL� wXMÞ2�PrðXM; yÞ that contains the
mechanical marginals PrðXM; yÞ ¼ XMh jrin

MðyÞ XMj i, where
rin

MðyÞ is the mechanical input state to be reconstructed after
time y/oM of harmonic evolution. In this experiment, we prepare
and reconstruct mechanical motional states with features that are
not smaller than w� 1 and hence, unless otherwise noted, we use
the optical measurement outcome distribution as an
approximation for the mechanical distribution using the scaled
outcome PL/w.

Mechanical state preparation and reconstruction. The
mechanical resonator used for this experiment is a micro-mirror
cantilever constructed from an epitaxial AlxGa1� xAs crystalline
multilayer, see Fig. 1b. The use of such a monocrystalline material
structure allows for a significant reduction of the mechanical
damping of the resonator when compared with dielectric
reflectors43 and simultaneously provides high optical reflectivity.
The crystalline material used here is nominally identical in
composition and individual layer thickness to structures used
previously44 and is designed for maximum reflectivity at our
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Figure 1 | Experimental setup. (a) Schematic of the experimental setup used to perform state tomography and state preparation of the motional state

of a mechanical resonator. In addition to the optical pulses, a weak continuous field is used to stabilize the interferometer phase using the

homodyne output passed through a low-pass filter with cutoff frequency below the mechanical frequency. (b) Colourized optical micrograph of the

high-reflectivity micro-mechanical cantilever fabricated for this experiment. The head of the cantilever, where the signal beam is focussed,

is 100mm in diameter. (c) Example time trace of the homodyne output for a pair of 4ms pulses. (For clarity, the pulse rising and falling edges are

not shown.) The measurement outcome PL is the time integral of the homodyne output (indicated by the shaded region). Time resolved

optical quantum noise is visible during the pulse.
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optical wavelength of 1,064 nm. The multilayer Bragg mirror
comprises 40.5 layer pairs in order to minimize transmission
losses. The cantilever was etched from a 6.88-mm thick multilayer
and is 1.45 mm in length with a cantilever arm 5mm in width
with a circular head 100mm in diameter, where the optical signal
beam is focussed. For details of the microfabrication procedure
see Cole45. Note that the resonator is etched directly from the
multilayer mirror material and is therefore equally reflective at all
points along the structure with an (intensity) reflectivity of
99.982%. This cantilever has a fundamental out-of-plane
vibrational mode with frequency oM/2p¼ 984.3 Hz, effective
mass meff¼ 260 ng (see the methods section), ground state width
x0¼ 5.7� 10� 15 m and a mechanical quality of Q¼ 3.1� 104 in
vacuum (10� 5 mbar) and at room temperature measured via
mechanical ringdown.

Our optical setup (Fig. 1a) was constructed from optical-fibre-
based components that provides good phase stability and
excellent spatial mode matching. Indeed, when the optical powers
in the two arms of the interferometer are balanced, we observed
an interference visibility exceeding 99.9%. We use a continuous
laser source and generate optical pulses of duration 1ms
(excluding the pulse edges) with a fibre-based intensity
modulator. The mean photon number in a signal pulse was up
to 107 and in order to provide a homodyne signal well above the
electronic noise, we use a large LO to signal ratio with up to 1010

photons per LO pulse. (These photon numbers were determined
via optical power measurement during continuous wave opera-
tion.) The signal pulses are directed onto the cantilever head
using an antireflection-coated fibre focuser and are then retro-
reflected. To calibrate the proportionality between the measure-
ment outcomes and the mechanical position, we reflect the signal
beam from a rigid mirror adjacent to the mechanical resonator
and scan the mirror position using a calibrated piezoelectric
actuator, recording both the piezo scan positions and pulse
measurement outcomes (see the methods section). For our
mechanical resonator ground state width (x0¼ 5.7� 10� 15 m),
this photon number per pulse yields a measurement strength w of
order 10� 4 and a momentum transfer O of order unity. The
radiation pressure backaction from the reflection of the pulse is
smaller than the mechanical thermal noise and is not observed;
however, as will be detailed in the following, this measurement
strength has a strong effect on the mechanical thermal noise.

After a pulsed measurement is performed to sample a
mechanical marginal, the mechanical state is reinitialized by first
allowing it to return to equilibrium with the environment and
then the mechanical state is reprepared. This process is repeated
many times to accumulate sufficient data to characterize the
statistical properties of the mechanical motion. The marginal
distributions were then obtained by constructing a histogram
from the many measurement outcomes recorded for each
mechanical phase-space angle y. As the states studied here are
symmetric about the XM and PM axes, we measure a set of many
marginals with angles between y¼ 0 and y¼ p/2 to fully
characterize the state of motion. The phase-space probability
distribution W(XM, PM) is then obtained by using the inverse
Radon transformation on the set of marginals.

The measurement results we obtained for motional state
preparation and reconstruction are summarized in Fig. 2. In
Fig. 2a a reconstruction of an initial thermal state that is driven by
white noise up to a mode temperature of 1,100 K that has width
sx¼ 1.2 nm is shown. This temperature was obtained using the
equipartition theorem kBTeff ¼ meffo2

Ms2
x , where the mechanical

position variance s2
x was obtained from the calibrated measure-

ment outcome distribution after subtracting the optical noise
contribution. A single pulsed measurement made on this initial
thermal state generates a motional state that has a reduced position

uncertainty (Fig. 2b). The observed momentum distribution of this
state, however, is unchanged as the back-action to the mechanical
momentum made by the reflection of the optical pulse is
much smaller than the mechanical thermal noise. Each
pulsed measurement generates a mechanical state with a
random but known mean due to the random measurement
outcome, see Equation (2). By making the transformation
PðrÞ

L
-PðrÞ

L
� Pðp1Þ

L cosy, where the superscripts (r) and (p1) indicate
read-out and preparation, respectively, this random mean is
subtracted and the distribution of the mechanical state can be
characterized. We would like to emphasize here that no ‘post
selection’ is performed and all measurement outcomes are used in
this process. Furthermore, our experimental pulsed technique
demonstrates the back-action-evading feature of measurement
repeatability, that is, a subsequent measurement is not affected by a
prior measurement19–22. Specifically, in our case the measurement
results of the read-out pulse made a short time after the
preparation pulse are the same as the preparation pulse to within
the optical quantum noise. The plots for Fig. 2a,b were generated
from the same data set, where the statistics of the preparation pulse
alone characterizes the unconditional initial thermal state and the
read-out pulse characterizes the conditional mechanical state. A
1,100 K thermal state (which has a root-mean-square (RMS)
amplitude less than a factor of two larger than a thermal state at
300 K) was used to increase the mechanical contribution to the
optical phase noise over the relevant B DC to MHz bandwidth for
our pulses to improve the signal-to-noise ratio for mechanical
conditional state preparation.

In Fig. 2c the reconstruction of a mechanical state of motion
prepared via two pulsed measurements separated by one quarter
of a mechanical period is shown. The width of the mechanical
phase-space distribution has been significantly reduced in both
the position and momentum quadratures compared with the
initial thermal state (Fig. 2a) and hence the effective mode
temperature has significantly decreased. This method of cooling is
rapid as it takes place well within a single mechanical period and
is, to the best of our knowledge, yet to be experimentally reported
elsewhere. For this pulse sequence the read-out pulse outcome is
transformed using PðrÞ

L
-PðrÞ

L
� Pðp2Þ

L
cos yþ Pðp1Þ

L
sin y, where y is

the angle of mechanical evolution made between the second
preparation pulse and the read-out pulse. Ideally, for this
mechanical state, the width of the mechanical marginals should
be constant for all y; however, in our experiment the phase
correlation between the pulses reduces with increasing pulse
separation as low frequency noise, due to imperfect phase locking,
enters the signal. This results in a broadening of the conditional
mechanical marginals as y increases. The effective temperature

Teff ¼ meffo2
Msðy¼0Þ

x sðy¼p=2Þ
x =kB observed for this state is 16 K,

which depends on the product of the standard deviations of the
position and momentum quadratures. Were the pulses to remain
correlated to within the quantum noise, the effective temperature
that could be reached for this measurement strength, taking the
effects of mechanical rethermalization into account, would be 4.4 K
(ref. 35). We would like to highlight here that rethermalization
contributes to less than 1% of this value. To summarize the observed
effects of single- and two-pulse mechanical state preparation
discussed above, Fig. 2e provides a plot of the measured mechanical
widths with y for the initial thermal state and the two mechanical
conditional states. In this plot, the mechanical widths were
determined from the calibrated pulse outcome distributions after
subtracting the optical noise contributions that were measured
independently. The data for both of the mechanical conditional states
were taken with the same signal pulse powers and for each phase-
space angle 300 pulses were recorded to construct the histograms.
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As an example of a non-Gaussian state of motion, we have
reconstructed a driven thermal state (Fig. 2d) that was generated
by applying a sinusoidal drive on resonance with the mechanical
eigenfrequency. Note that the two peaks in the mechanical
marginals are narrower than the broad thermal state in Fig. 2a, as
this state was prepared at room temperature without the white
noise drive. Even though this state of motion and the thermal
state are rotationally invariant in phase space, many marginals are
measured for their reconstruction. On the other hand, the

conditional mechanical states of motion are not rotationally
invariant in phase-space as the time of the preparation pulse(s)
sets the time for y¼ 0. Note that this pulse-based tomography
scheme does not measure the angle y¼ 0 as the read-out pulse is
temporally separated from the preparation pulse(s). The lack of
this marginal angle causes the rippling near XM¼ 0 in the
reconstructed phase-space distributions. By employing shorter
pulses and measuring the marginals at smaller angles this rippling
can be reduced.
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Figure 2 | Mechanical motional state preparation and full state reconstruction using optical pulsed quantum measurement. The uppermost row shows

the pulse protocols (pink - preparation, red - tomography). The two rows below show a subset of the measured probability distributions of the

mechanical quadratures Pr(x,y) and the reconstructed phase-space distributions W(XM,PM), respectively. The phase-space distributions were

reconstructed using nine marginal angles up to y �p/180¼90� (with a larger number of bins used than that shown for the marginals). For our current

measurement strength, that is, wo1, all the mechanical motional states reconstructed here can be described classically. (a) In the first column, tomography

and reconstruction of an initial mechanical thermal state driven by white noise up to a mode temperature of 1100 K is shown. The red dashed

circle has a radius equal to 2s of the initial thermal distribution. (b) A single pulsed measurement reduces the mechanical position variance, but leaves

the momentum distribution unchanged. (c) ‘Cooling-by-measurement’ performed with two pulses separated by one quarter of a mechanical period

rapidly reduces the mechanical state’s entropy. The effective temperature of the mechanical state reconstructed here has been reduced

to 16 K. (d) State reconstruction of a non-Gaussian mechanical state of motion generated by resonant sinusoidal drive. (e) The (one s.d.) width of

the position distribution observed for states (a–c) with phase-space angle y. The thermal state (red points) shows a position width approximately

twice of that when at room temperature (dashed line). State (b) has a reduced position width for small phase-space angles (purple points).

The position width of state (c) is reduced for all phase-space angles (blue points). The solid lines are theoretical fits obtained using Equation

(2) generalized for all y as well the two-pulse-preparation case. (f) Plot of the conditional mechanical width with pulse strength obtained using two

pulses separated by 5� of mechanical evolution. The dashed line is a theoretical fit with a model using two units of optical quantum noise and finite

mechanical evolution. The solid line is the inferred conditional mechanical width immediately after the preparation pulse. The vertical line indicates the

pulse strength used for states (a–c). The error bars on (e) and (f) indicate a one s.d. uncertainty.
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To demonstrate the scaling of our measurement strength in
Fig. 2f, the conditional mechanical width observed by a read-out
pulse made after 5� of mechanical free evolution is plotted with
increasing pulse amplitude. For this pulse separation, the two
pulses are well correlated and the width of the conditional
mechanical state is limited by the optical quantum noise in the
measurement (see the methods section for more details). As the
signal pulse strength is increased, the standard deviation of
the conditional mechanical position distribution decreases with
N� 1/2, which is a result of the optical number-phase uncertainty
relation. The dashed line in the plot is a theoretical prediction
including the two units of optical shot noise, one each for the
preparation and read-out pulses, and the small contribution from
the mechanical evolution between the two pulses. The relative
amplitudes for the data points were measured precisely and scaled
by a free fitting parameter into units of square-root photon
number, where the photon number per pulse obtained is
consistent with measurements of the optical power made during
continuous wave operation. For the largest optical pulse strength
used the statistics of the read-out pulse demonstrate a conditional
mechanical width (after the preparation pulse) of sx¼ 19 pm
corresponding to a measurement strength of w ¼ 2:1�10� 4.

Discussion
The techniques developed in this work provide the ability to
experimentally perform quantum optomechanics in the time
domain. This offers significant potential for optomechanics-based
quantum information and quantum metrology applications by
providing the framework for quantum state preparation of a
mechanical resonator via quantum measurement46. One may
then also envision combining such measurement based state
preparation with feedback to implement full quantum control47.
One exciting example of mechanical dynamics that can be probed
by pulsed optomechanics has been recently theoretically
discussed by Buchmann et al.48, where pulsed measurements, as
now realized in this work, are considered for the observation of
quantum tunnelling of a mechanical oscillator in a double-well
potential. Another example for quantum state preparation is that,
even though the optomechanical interaction used here is linear
with the mechanical position, by exploiting the optical non-
linearity, XM

2 measurements with a strength significantly larger
than that attainable with dispersive optomechanics can be
performed49. An X2

M measurement can be used to conditionally
prepare highly non-Guassian mechanical superposition states and
experimentally characterizing the decoherence of such states is
important to determine the feasibility of using mechanical
elements for coherent quantum applications and can also be
used to empirically test collapse models50–53. The pulsed
measurements performed here may also be utilized for a
quantum non-demolition measurement-based light-mechanics
quantum interface54. Furthermore, a sequence of four pulsed
optomechanical interactions can be used to generate non-classical
mechanical states of motion via an optomechanical geometric
phase55 and can even be used to experimentally explore potential
quantum-gravitational phenomena56.

For this experiment, to prepare a quantum-squeezed state of
mechanical motion, the measurement strength needs to be
increased to w41. An effective route to meet this requirement
would be to employ an optical cavity to enhance the
optomechanical interaction. Using the experimental parameters
achieved in this work, a cavity finesse of 104 is sufficient.
As such a cavity simultaneously requires a high finesse, as well as
a large bandwidth to accommodate a short optical pulse, this
is best achieved with an optomechanical microcavity35. Such
improvements to the measurement sensitivity will not only enable

Wigner reconstruction with significant negativity but, owing to
this pulsed protocol’s resilience against mechanical thermal noise,
may also allow the generation of non-classical mechanical states
in the regime of room temperature quantum optomechanics.

Methods
Verification of optical quantum noise. To verify that the measurement scheme
used here is optical quantum noise limited, we measured the phase quadrature
conditional variance of a pair of optical pulses with increasing total photon
number, that is, the sum of the signal and LO photons per pulse, while keeping the
signal to LO ratio fixed, see Fig. 3. As with our calibration procedure, the signal
beam is focussed onto a rigid mirror adjacent to the mechanical oscillator to
prevent coupling to the mechanical motion. The pulse separation used for this
measurement was 14.1 ms, which would correspond to 5� of mechanical free
evolution, and is the same as that used for the data set shown in Fig. 2f. With this
pulse separation the conditioning is essentially the second pulse outcome minus the
first pulse outcome. The quantum noise components of these two temporal modes
are uncorrelated; however, the lower frequency classical noise components vary
slowly between the two pulses and are thus suppressed by the conditioning.
Quantum mechanics predicts a linear dependence for the variance with total
photon number; however, had classical phase noise been the dominant
contribution, a quadratic dependence with the total photon number per pulse
would have been observed. (For a discussion on experimental aspects of observing
optical quantum noise, see Bachor and Ralph57). During this measurement, we
were limited to a total photon number of 1010 as the phase lock performance
dramatically reduced beyond this point. Were we able to measure beyond this
optical power the classical phase noise would have eventually become the dominant
noise and the conditional mechanical variance that could have been achieved
would have saturated.

The data points for Fig. 3 were obtained from Gaussian fits to histograms of the
conditional outcomes. The error bars indicate a one s.d. uncertainty as determined
from the fit. The observed conditional variance shows a linear dependence with the
total photon number with a ‘goodness of fit’ parameter R2¼ 0.97, taking the error
bars into account. This demonstrates that, up to a total photon number of order
1010, the conditional variance is quantum noise limited.

Also included in Fig. 3 is the measured electronic noise, that is, the conditional
variance observed using no light. This contribution is 19.5 dB smaller than the
observed optical quantum noise at the data point with the highest optical intensity
(NTOT¼ 9.5� 109).

Effective mass measurement. The optically probed effective mass of a
mechanical vibrational mode depends upon the geometry and material properties
of the mechanical structure as well as the intensity profile of the incident optical
beam. The mass associated with the mechanical displacement mode shape, that is,
the modal mass, is in general less than the total mass of the structure; however, the
optically probed effective mass can have a strong dependence on the position and
profile of the optical beam. We estimate the optically probed effective mass of the
cantilever in our experiment using a combination of measurements and finite
element analysis. Using the established values for the relevant elastic constants
averaged over the crystalline multilayer (C11¼ 119.6, C12¼ 55.5, C44¼ 59.1 GPa)
and the average material density 4,476 kg m� 3, the lateral geometry of the
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simulated resonator is adjusted until minimal error is found between the measured
and simulated eigenfrequencies for the first four out-of-plane mechanical modes,
see Fig.4a. (Note that the lowest frequency vibrational mode for our cantilever is an
in-plane mode as the cantilever used is slightly thicker than wide.) A mean dis-
crepancy between the measured and simulated frequencies of 6.1% was obtained by
reducing the feature linewidth by 0.875 mm with respect to the lithographic mask.
Note that the thickness of the free-standing mirror material was not used as a
fitting parameter as it was accurately determined from the reflectance spectrum of
the mirror58 and found to be 6.88 mm. Once the geometry is determined, the
effective mass is calculated via the volume integral59

meff ¼
r
R R R

dxdydzðu2 þ v2 þw2Þ
D2

ð3Þ

Here, r is the material density; u, v and w are the displacements of the body along
the x, y, and z directions, respectively, and the optically probed displacement D is
the overlap between the mechanical deflection and the optical Gaussian intensity
profile, that is

D ¼ 1
2pr2

0

Z Z
dxdywðx; y; z ¼ 0Þ exp � x2 þ y2

2r2
0

� �
ð4Þ

where r0 is the standard deviation of the Gaussian optical intensity profile and the
coordinate axis used for x, y and z has its origin in the centre of the cantilever head,
see Fig. 4b. The antireflection-coated fibre focuser used in our experiment provides
an optical beam diameter (4r0) of 10.6 mm, which is much smaller than the nominal
cantilever head diameter of 100 mm (as fabricated diameter of 98.25 mm). Thus, for
the fundamental out-of-plane mode, there is only a weak optical beam position and
width dependence on the effective mass. (In this case, the effective mass is
approximately equal to the intrinsic modal mass.) We have determined that the
fundamental out-of-plane mechanical mode utilized in our experiment, which
oscillates at 984.3 Hz, has an effective mass of 260 ng and thus a spring constant of
0.01 N m� 1. For the higher order modes of the structure; however, lateral
displacement of the beam leads to a rapid change in the effective mass. To mini-
mize the contribution from these higher mechanical modes it is necessary to
carefully position the optical beam. Assuming careful alignment, the geometry of
our mechanical structure is such that the contributions from higher order modes
are further suppressed as the effective mass rapidly increases with mode number.
Indeed, the unconditional RMS amplitudes of modes no. 4, 8 and 10 are 2.4%, 0.4%
and 0.1% that of mode no. 2, respectively.

Calibration procedure. We have used a two-step calibration procedure to deter-
mine the proportionality between the pulsed homodyne measurement outcomes
and the mechanical displacement. During this procedure the signal beam is focused
onto the chip edge, that is, a rigid unpatterned part of mirror material adjacent to
the mechanical resonator, to prevent mechanical motion contributing to the signal.
First, we calibrate the displacement of a piezoelectric actuator, which our fabricated
structure containing the mechanical oscillator is placed upon, in response to a
known drive voltage. We then drive the piezo and record the pulse measurement

outcomes during the controlled actuation in order to calibrate the pulsed inter-
ferometer. Each step is detailed below in the next two subsections, respectively.

Piezo calibration. To calibrate the piezoelectric actuator, we applied a sinusoidal
drive voltage and used a continuous signal beam to monitor the piezo motion. The
frequency of the drive was chosen such that the piezo mechanical response was
either in or out of phase with the drive voltage. (Experimentally, care was needed to
find a suitable drive frequency as the piezo does not have a flat spectral response.)
During this procedure, the phase between the signal and LO beams does not
require locking, and the piezo drive was at a higher frequency than the phase noise
components in the interferometer. We then adjusted the drive amplitude such that
the peak-to-peak piezo motion was one half of the optical wavelength. This can be
done precisely as the difference current output of the interferometer has separate
turning points occurring at the same level for this modulation depth and is then
proportional to cos½j0 þp sinot�, see Fig. 5, here j0 is the (unlocked) slowly
varying phase in the interferometer and o is the piezo drive angular frequency. As
j0 slowly changes this merely shifts the level of the turning points. In our
experiment, we used a drive frequency of 1.06 kHz and exploited a resonance of the
piezo to achieve a peak-to-peak scan of 532 nm using 4.6 Vpp.

Pulse calibration. Using the same piezo drive frequency as above, and using the
piezo actuator calibration value (metres per Volt) obtained, the actuator was
scanned with a reduced amplitude so that the optical phase shifts are small. (It was
verified that the piezo responds linearly with the applied Voltage over our range
of interest.) Then, during the piezo scan, pulsed position measurements are
performed and both the voltage applied to the piezo at the time of the measure-
ment and the pulsed measurement outcomes are recorded. The proportionality
between these recorded values is used to obtain the outcome per metre calibration.
This calibration value is optical amplitude dependent and had to be measured for
several optical amplitudes for the measurement shown in Fig. 2f.
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