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Optically active mechanical modes of tapered optical fibers
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Tapered optical fibers with a nanofiber waist are widely used tools for efficient coupling of light to photonic
devices or quantum emitters via the nanofiber’s evanescent field. In order to ensure well-controlled coupling, the
phase and polarization of the nanofiber guided light field have to be stable. Here, we show that in typical tapered
optical fibers these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional
oscillations that optomechanically couple to the nanofiber-guided light. We present a simple ab initio theoretical
model that quantitatively explains the torsional mode spectrum and that can be used to design tapered optical
fibers with tailored mechanical properties.
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Tapered optical fibers (TOFs) with a subwavelength-
diameter waist feature a strong evanescent field in the waist
region and are widely used to efficiently interface light and
matter or to couple light into photonic devices, such as
microresonators or photonic crystals. These applications rely
on the stability of the phase and polarization of the nanofiber-
guided light field as well as on the position of the nanofiber.
Achieving this stability is all the more challenging in a high
vacuum environment where the mechanical damping due to
the surrounding gas is negligible. Here, we experimentally
demonstrate that under these conditions torsional mechanical
modes exhibit surprisingly high quality factors and lead to
resonantly enhanced vibrations that modulate the phase and
polarization of the optical mode via the strain-optic effect.
Based on an analytic model as well as on experimental
measurements, we show that the commonly used exponential
radius profile confines a subset of the torsional mechanical
modes to the nanofiber section, leading to the high Q factors.

From a mechanical point of view, a TOF is a slender
cylinder with varying cross section. Torsional waves in such a
structure can be described by a one-dimensional wave equation
which has been treated comprehensively in the literature [1,2].
In the case of the mechanical modes considered here, their
wavelength is much larger than the largest cross section of
the TOF so that no higher order angular and radial modes
exist (slender rod approximation). Furthermore, the radius
variations occurring in the TOF profile are sufficiently shallow
to assume plane wave fronts that are perpendicular to the
fiber axis. Under these conditions, the torsional motion can
be described by a Webster-type wave equation
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where φ(t,z) is the angular displacement amplitude as a
function of time t and axial position along the fiber z and
∂x = ∂/∂x with x = t,z. The torsional wave velocity is radius
independent and given by ct = √

G/ρ = (3680 ± 130)m/s,
where G = (30 ± 2) GPa is the shear modulus and ρ =
(2210 ± 10)kg/m3 is the mass density of silica [3–5]. The
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third term of the wave equation takes the radius profile of the
cylinder, a(z), into account via the polar angular moment of
inertia Ip(z) = πρa(z)4/2.

Using a separation ansatz, one finds φ(t,z) =
�(z) cos(ω t + θ ), where ω is the angular frequency of
the mechanical motion and the phase θ is fixed by the
initial conditions. The remaining differential equation for
�(z) can then be solved for the cylindrical, conical, and
exponential sections of which the TOF is composed [see
Fig. 1(b)]. Last, the amplitude and torque are matched at the
interfaces between these sections. The conical radius profile
is given by a(z) = κz for which we obtain a Bessel-type
differential equation with the solutions [1] z−3/2J±3/2(k0z),
where Jn is the Bessel function of the first kind of order n

and k0 = ω/ct . In the case of the exponential horn, where
a(z) = a0 exp(αz/2), Eq. (1) becomes

∂2
z �(z) + 2α ∂z�(z) + k2

0�(z) = 0. (2)

This differential equation yields a cut-off frequency ωco
t = αct

below which �(z) exhibits no nodes [6]. In this case, �(z)
decreases exponentially along z, thereby imposing a strict
requirement on the mode shape of the neighboring TOF
sections. For higher frequencies than ωco

t , however, �(z) has
nodes in the exponential horn and extends further into the
latter.

We briefly mention two important modifications of ct which
typically occur in nanofibers: Even small axial forces create
high axial strain ε in nanofibers which modifies ct by a factor
[7] of [1 + 2(1 + νp)ε]1/2, where νp = 0.168 is Poisson’s
ratio [4]. Close to the rupture point of the nanofiber [8], one
obtains an increase of ct by 18%. In some experiments, high
optical powers are used which can heat the nanofiber up to
temperatures of 1000 K and beyond [9–11]. The value of
Young’s modulus and Poisson’s coefficient increase from room
temperature to 1400 K by 11% [3], thereby increasing ct by
up to 5%.

The TOFs are fabricated from commercial fused silica
optical fibers with a cladding diameter of 125 μm in a heat
and pull process [12] which allows us to fabricate TOFs
of predetermined shape with a relative radius uncertainty of
±10% [13] and a relative radius homogeneity in the waist
region of 1% (peak to peak) [14]. The TOF radius profile is
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FIG. 1. (Color online) (a) Schematic view of the experimental
setup (see text for details). (b) Schematic cross-section profile of the
TOF resonator where the radii at the section boundaries and the full
opening angles of the conical sections are given. (c) Schematic view
of the electrode arrangement used to excite the mechanical modes that
consists of two wires that are placed above and below the nanofiber.
The latter is oriented prependicular to the figure.

schematically shown in Fig. 1(b) and consists of a cylindrical
nanofiber waist with a radius of rw = 500 nm and a length of
lw = 10 mm which widens in two taper sections on both sides
to the initial fiber diameter. Each of the latter is composed
of two conical sections with different opening angles which
are connected to the waist by a 9-mm-long section with
an exponential radius profile where α = 0.76 mm−1 (see
above). After the fabrication process, the fibers are strained by
εw ≈ 2% of the nominal waist length and glued to a U-shaped
aluminum holder.

The measurement scheme used here detects periodic re-
fractive index variations in the material that are caused by the
mechanical vibrations via the strain-optic effect [4,15]. They
are observed via polarization fluctuations of the transmitted
light or via optical path-length variations using a fiber-
integrated optical Fabry-Pérot type cavity [16]. The latter
consists of two fiber Bragg grating mirrors (FBGs) with a stop
band at a central wavelength of λFBG = 852 nm and a spectral
width of 0.2 nm that are located on both sides of the TOF in
the untapered portion of the fiber [see Fig. 1(b)]. We probe the
resonator using laser light with a wavelength within the FBG
stop band that is launched into the TOF via a fiber coupler
[see Fig. 1(a)]. The TOF is placed inside a vacuum chamber
with a minimal pressure of 10−7 mbar in order to minimize the
mechanical damping from the background gas. At the output
port of the fiber, the transmitted light is split by a 50/50 beam
splitter and detected with two photodiodes (PD1 and PD2). The
signal of PD2 is used to stabilize the frequency of the laser
to the side of a Fabry-Pérot fringe at half maximum, thereby
maximizing the sensitivity to optical path-length changes and
the dynamic range. The stabilization bandwidth of 2 kHz is
chosen much smaller than the frequencies of the mechanical
modes under study.

For the method in which the polarization fluctuations are
detected, we set the laser to a wavelength outside the FBG
stop band or, alternatively, use a TOF without a resonator. A
polarizing beam splitter cube (PBC) converts the polarization
fluctuations to intensity variations that are detected by a

FIG. 2. (Color online) Spectral amplitude detected from polar-
ization fluctuations of two samples with the same radius profile,
measured with thermal (lower purple line) and external (upper blue
line) excitation. The green markers show the model prediction. Inset:
Magnified view of the response function in the spectral range around
35 kHz.

photodiode at the PBC’s transmission port. Polarization optics
before and after the fiber are used to optimize the signal
strength. In addition to passive thermal driving, the mechanical
modes can be actively excited by an electric field that exerts
an alternating force on stray charges on the insulating silica
surface. This field is localized along the nanofiber axis and is
generated by two thin and movable electrodes placed above
and below the fiber [see Figs. 1(a) and 1(c)].

We first measure the amplitude spectrum of the thermal
motion using the polarization method. The resulting spectrum
is shown as the lower purple line in Fig. 2. The spectrum
features three peaks at frequencies of 162, 321, and 469
kHz, corresponding to three mechanical resonances. These fre-
quencies are approximately integer multiples which indicates
that they are harmonics of the same mechanical mode and
that the lowest frequency stems from the fundamental mode.
We compare this measurement to the spectral response of a
TOF with the same radius profile subjected to electric field
excitation at a fixed position. For this purpose, a sinusoidal
voltage modulation is applied to the electrodes while recording
the amplitude at the modulation frequency using a lock-in
detection scheme. We obtain a spectral response which shows
resonances that coincide with previously observed ones (see
the upper blue line in Fig. 2). This confirms the reproducibility
of our fabrication method. Additionally, we find resonances
with a much smaller frequency spacing in the frequency
range beyond 470 kHz. This frequency matches the theoretical
cut-off frequency of ωco

t = 2π450 kHz for the exponential
taper sections. The higher spectral mode density stems from the
larger spatial extent of the modes above the cut-off frequency.
Furthermore, we observe resonances with a frequency spacing
of ≈1.8 kHz over the full spectral range (see Fig. 2, inset).
By additional finite element method calculations, we confirm
that they correspond to transversal modes. In contrast to the
torsional modes, transversal modes are not confined by the
taper but extend over the full length of the TOF, thereby
resulting in the small frequency spacing.

We make an ab initio theory prediction for the torsional
resonance frequencies that is derived from the design radius
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FIG. 3. (Color online) Absolute value of the signal amplitude as
function of the electrode position for selected modes (blue circles).
The waist region is determined from the symmetry point of the
modes and is indicated by dashed lines. The theory prediction of
the mode profiles is shown as a purple (solid) line for the modes at
the frequencies: {163.2; 322.9; 466.8; 610.4} kHz.

profile of the TOF and the bulk elastic constants of silica. We
omit modes which exhibit a high amplitude near the clamping
points and which are therefore expected to suffer from high
clamping losses. Such modes stem from the torsional oscilla-
tion of the two ends of the TOF which are weakly coupled by
the nanofiber. In the simulations, they can be clearly identified
via their spatial mode profile and because they come in pairs
with a small frequency splitting between the odd and even
mode. The predicted frequencies for the remaining modes are
marked in Fig. 2 by green disks and show excellent agreement
with the observed fundamental and second harmonic torsional
resonance frequencies. Furthermore, the theory reproduces the
close mode spacing above the cut-off frequency. The precise
resonance frequencies in this frequency range are not correctly
predicted by the theory. We attribute this fact to deviations
between the assumed and the actual radius profile.

We now measure the modal amplitude profiles along the
TOF axis for selected modes. This is achieved by recording the
response of the TOF to fixed-frequency excitation at different
axial positions along the fiber (see Fig. 3). We expect that the
effective excitation strength depends on the fiber radius. As
a consequence, the measured response is only proportional
to the modal amplitude profile in the waist region where
the radius is constant. The modal amplitude profiles of the
resonances at 162 and 321 kHz resemble that of the first
two harmonics of a cylinder with clamped ends. The two
higher modes, however, extend much further into the taper
region and the mode at f = 621.3 kHz exhibits nodes in the
exponential section. Hence, we directly observe the effect of
the exponential horn: At frequencies below ωco

t , the modes
are required to decay exponentially along the taper with a
decay constant that becomes more shallow with increasing
frequencies. Beyond ωco

t , the modes expand further into the
taper with nodes along the fiber axis. We find good qualitative
agreement with the theoretical prediction of the absolute modal
amplitude profile (see the purple lines in Fig. 3).

We now determine the phase velocity of the modes from
their frequency and the wavelength using ct = λf . The wave-

length is inferred from the separation of two nodes or antinodes
in the waist region. Their position and the corresponding
uncertainty are indicated by the center and the width of the
gray bars in Fig. 3, respectively. We obtain λ/2 = (6.2 ±
0.4) mm at f = (320.6 ± 4.1) kHz, λ/2 = (3.8 ± 0.3) mm
at f = (468.9 ± 1.9) kHz, and λ = (6.0 ± 0.3) mm at f =
(621.3 ± 0.2) kHz. We compute ct using the weighed average
of all measurements and obtain

ct = (3737 ± 177) m/s. (3)

This value is in excellent agreement with the literature value
of the torsional acoustic velocity in silica [3–5] (3680 ±
130) m/s and is clearly different from the ones for axial
(5630 ± 170) m/s and string modes (1130 ± 35) m/s. This
result further substantiates the identification of the mechanical
modes as torsional modes of the TOF.

We now measure the Q factors of the individual mechan-
ical modes using a ring-down technique. We determine the
amplitude decay time from an exponential fit which we use to
compute the Q factors listed in Table I. We find high values
of Q ≈ 2.5 × 104 for the first two harmonics. The mechanical
loss in silica has been studied extensively in literature [17,18].
For small structures, such as nanofibers, it is dominated by
surface effects which scale with the surface-to-volume ratio
(SVR). Based on this model, we obtain a prediction for the
nanofiber waist of Q = (1.5 ± 0.5) × 104, slightly lower than
the measured values. The deviation might be partly due to the
fact that the mode extends into the taper region where the SVR
is more favorable. Note that the resonance frequencies of the
TOF used for this measurement are 9% smaller than for the
previous samples. This is due to a lower mechanical strain
applied to the sample.

We also study the damping of the torsional modes by the
background gas. For this purpose, we measure the Q factor of
the fundamental mode at different gas pressures (see Fig. 4).
The Q factor is approximately constant up to pressures of
p ∼ 10−3 mbar, meaning that the intrinsic losses dominate,
and then decreases due to damping by the background gas.
We fit the data by an empirical model that assumes that
the damping is proportional to the particle density and find
excellent agreement (see the red line in Fig. 4).

Summarizing, we show that tapered optical fibers exhibit
optically active mechanical modes. The thermal excitation
of these modes at room temperature leads to high-frequency
fluctuations of the phase and polarization of the nanofiber-
guided light. We measured the spectrum of these fluctuations
and found resonances at frequencies of several 100 kHz which
we identified as torsional modes. We showed that the widely
used exponential radius profile confines these modes to the

TABLE I. Q factors of selected mechanical modes.

f (kHz) 10−4 Q f (kHz) 10−4 Q f (kHz) 10−4 Q

148 2.60 ± 0.05 500 0.18 ± 0.05 556 0.33 ± 0.02
302 2.30 ± 0.05 502 0.71 ± 0.03 574 0.56 ± 0.03
401 0.18 ± 0.07 526 0.75 ± 0.03 778 0.31 ± 0.02
441 1.03 ± 0.03 529 0.11 ± 0.02 817 0.12 ± 0.01
453 0.17 ± 0.03 545 0.40 ± 0.03

061801-3



RAPID COMMUNICATIONS

C. WUTTKE, G. D. COLE, AND A. RAUSCHENBEUTEL PHYSICAL REVIEW A 88, 061801(R) (2013)

FIG. 4. (Color online) Quality factor of the fundamental torsional
mode (148.1 kHz) as a function of the background gas pressure (points
with error bars). Red line: empirical model fit of the form Q−1(p) =
Q−1

i + (η/p)−1, where Qi = (2.31 ± 0.06) × 104 and η = (923 ±
89) mbar.

nanofiber section below a cut-off frequency, thereby enabling
high Q factors at low gas pressures. Our analytic ab initio
mechanical model of the tapered optical fibers reproduces

the measured spectrum and amplitude profiles. It should thus
allow one to design the mechanical spectrum according to
experimental needs.

Our findings have important consequences for the use of
tapered optical fibers in a high vacuum environment. As an
example, first estimations show that the thermal polarization
fluctuations found in this work currently limit the storage time
of nanofiber-based atom traps [9,10]. They might also limit the
ultimate ideality of tapered fiber coupling to photonic devices
[19]. More generally, high-Q torsional resonances may also
occur in other kinds of freestanding subwavelength-diameter
waveguides and may influence the stability of the guided light
fields. This applies, in particular, to the case of polarization
maintaining structures where the torsional vibration directly
translates into the polarization rotation.
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