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Motivation

Extending the functionality of microsystems (sensors, 
actuators, etc.) to realize 'optically active' structures

 Microelectromechanical systems (MEMS) are typically 
fabricated in silicon using procedures borrowed from 
integrated circuit manufacturing

 Compound semiconductors have unique properties
• capable of efficient light absorption and emission
• high carrier mobility and novel electronic properties
• potential to utilize piezoelectric effects

 Integrating micromechanical elements allows for:
• "dynamic" sources (capable of wavelength tunability)
• sensors and actuators with optical functionality
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Motivation

Compound semiconductor photonic devices

 Light emitting diodes

 Diode lasers (from DVDs to fiber optic networks)
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Motivation

Microelectromechanical systems (MEMS)

 Accelerometers

 Ink jet printer cartridges

 Digital mirror devices
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Motivation

The convergence of photonics and MEMS

 Potential for ‘dynamic’ optically active devices
 not simply passive reflectors for shuffling photons
 active manipulation of light: production, detection, amplification

 Incorporates a broad spectrum of scientific disciplines
• solid state physics
• quantum mechanics
• classical mechanics
• materials science
• chemistry
• electrical engineering
• mechanical engineering
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Band Theory of Solids

 Isolated atoms exhibit discrete emission/absorption lines
• electrons are bound within well-defined states

 In solids these 
states broaden 
into "bands"

•Pauli exclusion 
principle drives 
splitting of levels

•electrons seek to 
occupy lowest 
available states
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Band Theory of Solids

 Occupancy of the bands, as well as their energy separation 
determines the electronic properties of the material

• atomic valence structure has large impact on properties

 Insulators
• filled bands with large

energy gap between

 Metals
• partially filled or 

overlapping bands

 Semiconductors
• basically insulators

with a reduced gap

Energy
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Relevant Materials
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Optically 'Active' Materials

 Two distinct band structures: direct vs. indirect
• photons have very low momentum
• phonons required for momentum transfer
• direct bandgap exhibits efficient emission/absorption
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 stimulated absorption = photo-excitation of electron (e-)

 spontaneous emission = relaxation of e-, random photon out

 stimulated emission = photo-induced relaxation, identical photon

Absorption and Emission Processes
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 Photon amplification through stimulated emission of radiation
• input photon induces electrons to transition from CB to VB
• stimulated photon is identical in all respects to the input photon
• 1 photon in = N photons out

Optical Amplification

Pump Source
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Ec
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 Forward biased p-n homojunction
• carriers combine (near) depletion region under forward bias
• possibility for creating a population inversion at junction

 Unfortunately, efficiency of these structures is rather poor
• carrier leakage past junction and optical re-absorption

Direct Electrical Injection: p-n junction
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Direct Electrical Injection: p-n junction

 Forward biased p-n heterojunction
• carriers confined to depletion region
• population inversion at junction

 Efficiency of these structures largely exceeds homojunctions
• carrier leakage and optical re-absorption reduced
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The Semiconductor Heterostructure
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Map of the World



Advanced Optical Microsystems

 Surround low bandgap layer with higher bandgap materials
• with matched lattice constant structures remain single-crystal

 Quantum confined heterostructures: quantum wells and dots
• low bandgap layer exhibits quantum confinement effects
• extremely thin films generated by high quality epitaxial processes

Heterostructure Examples
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Optical Processes Summary

 Semiconductors have unique electronic properties

 Not all semiconductors are created equal!
• direct bandgap required for efficient optical functionality
• III-V materials such as GaAs and InP

 Electron-hole recombination processes generate photons 
• spontaneous emission from random recombination
• stimulated emission for optical amplification

 Optical and electrical carrier injection
• photon emission processes require electron-hole pairs
• efficient recombination enabled by heterostructures
• thin layers can exhibit quantum effects
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 LASER: Light amplification by stimulated emission of radiation

 Three key components:
• Pump = produce population inversion
• Gain Medium = realize photon amplification
• Feedback = maintain large photon density

Requirements for a Laser

Pump Source
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+ Noise

Gain Medium

Amplified 
Output

+ Noise



Advanced Optical Microsystems

 Metallic mirrors

• simple, but lossy due to absorption, difficult to tune R

 Distributed Bragg Reflectors (DBRs)
• repeating stacks of alternating "quarter-wave" layers
• individual layers are transparent, reduced absorption

Types of Mirrors
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Distributed Bragg Reflectors

 At the Bragg wavelength all reflections add in phase

 Advantages:
• tune reflectivity by changing number of layers (or materials)
• very low absorption loss as layers are transparent
• very high reflectivity possible (99.9999%)
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Distributed Bragg Reflectors

 At the Bragg wavelength all reflections add in phase

 Advantages:
• tune reflectivity by changing number of layers (or materials)
• very low absorption loss as layers are transparent
• very high reflectivity possible (99.9999%)
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Optical Cavities

 To achieve feedback we need to incorporate 2 mirrors
• force photons to make multiple passes through the gain medium

 Fabry-Pérot Etalon
• exhibits 'resonances' at certain wavelengths
• supports a number of optical modes

supported 
mode
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Fabry-Pérot Etalon

 Frequency spacing between resonances determined by:
• physical separation of mirror elements

− longer separation leads to more modes with reduced spacing

 Center frequency may be "tuned" by altering separation
• useful for developing wavelength tunable devices
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Advantages of Microcavity Structures

Single axial mode operation
• one optical mode overlaps with 

active material gain spectrum
• stable emission wavelength 

(controlled by cavity)
• gain peak must coincide with 

the supported mode!

Resonance Tuning:
• large free-spectral range and 

wide single-mode tunability
• vertical orientation allows for 

facile integration of MEMS
• continuous tuning through 

physical path length changes
• rapid λ scanning possible (MHz)
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Reflectors and Cavities Summary

 Lasers (and some amplifiers) require photon feedback 
• realized by incorporating gain medium in a cavity
• allows for the generation of a high photon density

 A variety of mirror options exist
• air/semiconductor interface (30%)
• metals (high reflectivity but lossy due to absorption)
• low loss mirrors: Distributed Bragg Reflectors (DBRs)

 Fabry-Pérot cavities are the standard structure
• two parallel mirrors at a given separation
• optical interference in cavity results in resonances
• mirror spacing determines center frequency of each mode
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A Brief History of Semiconductor Lasers

 First laser demonstrated by T. Maiman in 1960 at HRL 
• solid-state device with a ruby (Al2O3:Cr) active region
• optically pumped with a flash lamp and silvered mirrors

 This started the race for the diode laser
• MIT LL demonstrated efficient optical emission from GaAs 
• US competition includes: Linc. Labs, RCA, IBM, GE
• GaAs p-n junctions and cleaved/polished mirrors

 First demonstration by R. Hall of GE in September 1962
• threshold current of 10,000 A/cm2

• pulsed electrical injection
• cryogenic operation
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Typical Edge-Emitting Laser

 Fabry-Pérot laser diode with ridge waveguide
• direct electrical injection (milli-Amp); quantum well gain medium
• double heterostructure for carrier and optical confinement

 Pervasive devices
• CD/DVD players, communications, medical applications, etc.
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Diode Lasers as Optical Amplifiers

 Laser diodes may also operate as optical amplifiers
• run laser below 'threshold' and inject external signal
• stimulated emission process amplifies the injected signal

 Differences in design:
• reduced feedback (or none at all); increased optical gain
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In-Plane vs. Vertical-Cavity

• High single pass gain
• Low reflectivity mirrors (facets)
• Highly astigmatic output
• Large footprint 
• High power consumption 
• In-plane integration

• Low single pass gain
• High reflectivity mirrors (DBRs)
• Circular output (polar. indep.)
• Small active volume
• Low power operation
• 2-D arrays (vertical integration) 

In-plane Vertical-cavity
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 Current interest in developing low cost optoelectronics
• Short haul fiber-optic networks, fiber-to-the-home, etc.

 Vertical-cavity lasers and amplifiers offer a unique approach:
• Cavity geometry allows for surface normal operation
• Small size and low power consumption
• Polarization independent gain
• Construction of arrays

Microcavity Motivation
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Summary: Diode Laser and Amplifiers

 First semiconductor laser demonstrated by GE in 1962 
• GaAs homojunction with very high threshold
• improvements have made these devices ubiquitous

 Two distinct classes of diode lasers now available
• FP edge-emitter is the most common
• VCSELs (microcavity lasers) are becoming popular

• require high reflectivity mirrors, have reduced output powers

 With proper design can be used as optical amplifiers
• reduced feedback to avoid self-sustaining oscillation
• increased gain for maximum amplification
• mirror spacing determines center frequency of each mode
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Tunable Microcavities

Advantages:

 Vertical orientation allows for straight forward integration 
of MEMS actuator structures

 Short cavity length:
• inherently single-axial mode operation
• continuous tuning through physical path length changes

Example Tunable Microcavity Device:

 Tunable vertical-cavity optical amplifiers (VCSOAs)
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Optical Network Block Diagram

 Three basic types of optical amplifiers:
• Booster - increase power at source (integrated w/laser)
• In-line - make up for propagation losses (EDFA)
• Pre-amplifier - enhance receiver sensitivity (APD)

 Improvements needed at the receiver end
• PIN diodes: poor sensitivity; APDs: limited gain-bandwidth product
• optical pre-amp to simultaneously enhance bit-rate and sensitivity 
• VCSOAs are capable of high-speed optical gain and filtering
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• Short active material length results in a small single-pass gain 
• Fabry-Pérot operation leads to a narrow gain bandwidth
• Potential applications include:

• Single-channel amplifiers, amplifying filters, premaplifiers in receiver modules
• In multi-wavelength (WDM) and reconfigurable optical networks 

wavelength tunable devices are desirable

Fixed-Wavelength VCSOA
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• Incorporating tunability allows the peak gain of the VCSOA to be 
adjusted to match the desired signal wavelength

• Signal drift compensation
• Selective multi-channel amplification in WDM systems

• Temperature tuning of 8 nm has previously been demonstrated
• High power consumption and limited wavelength tuning range
• Time response limited by thermal transients

Fixed-Wavelength VCSOA
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MEMS-Tunable VCSOA

• Incorporating tunability allows the peak gain of the VCSOA to be 
adjusted to match the desired signal wavelength

• Signal drift compensation
• Selective multi-channel amplification in WDM systems

• MEMS-based tuning exhibits a number of advantages 
• Low power consumption and fast time response (<10 µs)
• Continuous, wide wavelength tuning  (>20 nm)
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MEMS Actuator Background

 Electrothermal – Joule heating leads to thermal expansion of actuator
 Electrostatic – Coulomb force generated in a capacitive system
 Piezoelectric – Noncentrosymmetric crystal structure, applied charge 

results in mechanical strain in material
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High-Performance Tunable VCSOA

 Reflection mode amplifier
 Transmissive bottom mirror
 High reflectivity suspended DBR
 Hybrid GaAs/InP/GaAs cavity 
 28 AlInGaAs quantum wells
 980-nm EDFA pump for excitation
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MEMS-Tunable VCSOA
• Direct wafer bonding of 

AlGaAs DBRs to InP-
based active region

• DBR pillar etch (SiCl4)
• Expose tuning contacts 

and evaporate 
Ge/Au/Ni/Au

• RIE etch of actuator 
geometry

• Isotropic wet etch in 
dilute HCl to release 
sample

• CO2 critical point dry

Fabrication Procedure
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Micrograph of Mechanical Structure
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650 μm
8 mm

On-Chip 2-Dimensional Arrays
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On-Chip 2-Dimensional Arrays

650 µm



Advanced Optical Microsystems

Experimental Setup

temperature controlled
copper stage

980/1550
WDM coupler 

MEMS
Tunable VCSOA

circulator

1.5 µm
Tunable

laser

optical
spectrum
analyzer

variable optical
attenuator

DC power      –
supply             +

fiber focuser

980 nm Pump
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Wide Effective Tuning Range

>5 dB fiber-to-fiber gain (>12 dB on chip) measured over 21 nm
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Electrostatic Actuator Characterization

MEMS characterization via LDV:
• Simple harmonic response for small 

signal (2 V) excitation in vacuum
• Duffing response for large deflection
• Significant damping at ambient press.

 Q of 1.2, response time of 6 μs
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• The integartion of MEMS can enhance the performance 

of compound-semiconductor-based devices

• Microcavities are an active research topic both in the 

fundamental and applied sciences

• Example Device Highlighted:

• Development of MEMS-tunable vertical-cavity SOA for use as 

a wavelength-agile optical preamplifier

• 21 nm of tuning near 1550 nm, >12 dB fiber-to-fiber gain

Summary and Conclusions
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